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PRE FACE

Thi s int roduc tion to Gro up The ory, wit h its  emp hasis  on Lie  Gro ups

and  the ir app licat ion to the  stu dy of sym metri es of the  fun damen tal

con stitu ents of mat ter, has  its  ori gin in a one -seme ster cou rse tha t I tau ght

at Yal e Uni versi ty for  mor e tha n ten  yea rs.  The  cou rse was  dev elope d for 

Sen iors,  and  adv anced  Jun iors,  maj oring  in the  Phy sical  Sci ences .  The 

stu dents  had  gen erall y com plete d the  cor e cou rses for  the ir maj ors, and 

had  tak en int ermed iate lev el cou rses in Lin ear Alg ebra,  Rea l and  Com plex

Ana lysis , Ord inary  Lin ear Dif feren tial Equ ation s, and  som e of the  Spe cial

Fun ction s of Phy sics.   Gro up The ory was  not  a mat hemat ical req uirem ent

for  a deg ree in the  Phy sical  Sci ences .  The  maj ority  of exi sting 

und ergra duate  tex tbook s on Gro up The ory and  its  app licat ions in Phy sics

ten d to be eit her hig hly qua litat ive or hig hly mat hematic al.  The  pur pose of

thi s int roduc tion is to ste er a mid dle cou rse tha t pro vides  the  stu dent wit h

a sou nd mat hemat ical bas is for  stu dying  the  sym metry  pro perti es of the 

fun damen tal par ticle s.  It is not  gen erall y app recia ted by Phy sicis ts tha t

con tinuo us tra nsfor matio n gro ups (Li e Gro ups) ori ginat ed in the  The ory of

Dif feren tial Equ ation s.  The  inf inite simal  gen erato rs of Lie  Gro ups

the refor e have forms that involve differential operators and their

commutators, and these operators and their algebraic properties have found,

and continue to find, a natural place in the development of Quantum Physics.

Guilford, CT.

                           June, 2000.
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1

INT RODUC TION

The  not ion of geo metri cal sym metry  in Art  and  in Nat ure is a

fam iliar  one .  In Mod ern Phy sics,  thi s not ion has  evo lved to inc lude

sym metri es of an abs tract  kin d.  The se new  sym metri es pla y an ess entia l

par t in the  the ories  of the  mic rostr uctur e of mat ter.  The  bas ic sym metri es

fou nd in Nat ure see m to ori ginat e in the  mat hemat ical str uctur e of the  law s

the mselv es, law s tha t gov ern the  mot ions of the  gal axies  on the  one  han d

and  the  mot ions of qua rks in nuc leons  on the  oth er.

In the  New tonia n era , the  law s of Nat ure wer e ded uced fro m a sma ll

num ber of imp erfec t obs ervat ions by a sma ll num ber of ren owned 

sci entis ts and  mat hemat ician s.  It was  not  unt il the  Ein stein ian era ,

how ever,  tha t the  sig nific ance of the  sym metri es ass ociat ed wit h the  law s

was  ful ly app recia ted.  The  dis cover y of spa ce-ti me sym metri es has  led  to

the  wid ely-h eld bel ief tha t the  law s of Nat ure can  be der ived fro m

sym metry , or inv arian ce, pri ncipl es.  Our  inc omple te kno wledg e of the 

fun damen tal int eract ions mea ns tha t we are  not  yet  in a pos ition  to con firm

thi s bel ief.  We the refor e use  arg ument s bas ed on emp irica lly est ablis hed

law s and  res trict ed sym metry  pri ncipl es to gui de us in our  sea rch for  the 

fun damen tal sym metri es.  Fre quent ly, it is imp ortan t to und ersta nd why 

the  sym metry  of a sys tem is obs erved  to be bro ken.

In Geo metry , an obj ect wit h a def inite  sha pe, siz e, loc ation , and 

ori entat ion con stitu tes a sta te who se sym metry  pro perti es, or inv arian ts,
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are  to be stu died.   Any  tra nsfor matio n tha t lea ves the  sta te unc hange d in

for m is cal led a sym metry  tra nsfor matio n.  The  gre ater the  num ber of

sym metry  tra nsfor matio ns tha t a sta te can  und ergo,  the  hig her its 

sym metry .  If the  num ber of con ditio ns tha t def ine the  sta te is red uced

the n the  sym metry  of the  sta te is inc rease d.  For  exa mple,  an obj ect

cha racte rized  by obl atene ss alo ne is sym metri c und er all  tra nsfor matio ns

exc ept a cha nge of sha pe.

In des cribi ng the  sym metry  of a sta te of the  mos t gen eral kin d (no t

sim ply geo metri c), the  alg ebrai c str uctur e of the  set  of sym metry  ope rator s

mus t be giv en; it is not  suf ficie nt to giv e the  num ber of ope ratio ns, and 

not hing els e.  The  law  of com binat ion of the  ope rator s mus t be sta ted.  It

is the  alg ebrai c gro up tha t ful ly cha racte rizes  the  sym metry  of the  gen eral

sta te.

The  The ory of Gro ups cam e abo ut une xpect edly.   Gal ois sho wed

tha t an equ ation  of deg ree n, whe re n is an int eger gre ater tha n or equ al to

fiv e can not, in gen eral,  be sol ved by alg ebrai c mea ns.  In the  cou rse of thi s

gre at wor k, he dev elope d the  ide as of Lag range , Ruf fini,  and  Abe l and 

int roduc ed the  con cept of a gro up.  Gal ois dis cusse d the  fun ction al

rel ation ships  amo ng the  roo ts of an equ ation , and  sho wed tha t the 

rel ation ships  hav e sym metri es ass ociat ed wit h the m und er per mutat ions of

the  roo ts.
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The  ope rator s that  tra nsfor m one  fun ction al rel ation ship int o

ano ther are  ele ments  of a set  tha t is cha racte risti c of the  equ ation ; the  set 

of ope rator s is cal led the  Gal ois gro up of the  equ ation .  

In the  185 0’s, Cay ley sho wed tha t eve ry fin ite gro up is iso morph ic

to a cer tain per mutat ion gro up.  The  geo metri cal sym metri es of cry stals 

are  des cribe d in ter ms of fin ite gro ups.  The se sym metri es are  dis cusse d in

man y sta ndard  wor ks (se e bib liogr aphy)  and  the refor e, the y wil l not  be

dis cusse d in thi s boo k.

In the  bri ef per iod  bet ween 192 4 and  192 8, Qua ntum Mec hanic s

was  dev elope d. Alm ost imm ediat ely, it was  rec ogniz ed by Wey l, and  by

Wig ner, tha t cer tain par ts of Gro up The ory cou ld be use d as a pow erful 

ana lytic al too l in Qua ntum Phy sics.   The ir ide as hav e bee n dev elope d ove r

the  dec ades in man y are as tha t ran ge fro m the  The ory of Sol ids to Par ticle 

Phy sics. 

The  ess entia l rol e pla yed by gro ups tha t are  cha racte rized  by

par amete rs tha t var y con tinuo usly in a giv en ran ge was  fir st emp hasiz ed

by Wig ner.  The se gro ups are  kno wn as Lie  Gro ups.  The y hav e bec ome

inc reasi ngly imp ortan t in man y bra nches  of con tempo rary phy sics, 

par ticul arly Nuc lear and  Par ticle  Phy sics.   Fif ty yea rs aft er Gal ois had 

int roduc ed the  con cept of a gro up in the  The ory of Equ ation s, Lie 

int roduc ed the  con cept of a con tinuo us tra nsfor matio n gro up in the  The ory

of Dif feren tial Equ ation s.  Lie ’s the ory uni fied man y of the  dis conne cted

met hods of sol ving dif feren tial equ ation s tha t had  evo lved ove r a per iod of
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two  hun dred yea rs.  Inf inite simal  uni tary tra nsforma tions  pla y a key  rol e in

dis cussi ons of the  fun damen tal con serva tion law s of Phy sics. 

In Cla ssica l Dyn amics , the  inv arian ce of the  equ ation s of mot ion of a

par ticle , or sys tem of par ticle s, und er the  Gal ilean  tra nsfor matio n is a bas ic

par t of eve ryday  rel ativi ty.  The  sea rch for  the  tra nsfor matio n tha t lea ves

Max well’ s equ ation s of Ele ctrom agnet ism unc hange d in for m (in varia nt)

und er a lin ear tra nsfor matio n of the  spa ce-ti me coo rdina tes, led  to the 

dis cover y of the  Lor entz tra nsfor matio n.  The  fun damen tal imp ortan ce of

thi s tra nsfor matio n, and  its  rel ated inv arian ts, can not be ove rstat ed.

2

GALOIS GROUPS

     In the early 19th - century, Abel proved that it is not possible to solve the

general polynomial equation of degree greater than four by algebraic means.

He attempted to characterize all equations that can be solved by radicals.

Abel did not solve this fundamental problem.  The problem was taken up and

solved by one of the greatest innovators in Mathematics, namely, Galois.

2.1. Solving cubic equations

The main ideas of the Galois procedure in the Theory of Equations,

and their relationship to later developments in Mathematics and Physics, can

be introduced in a plausible way by considering the standard problem of

solving a cubic equation.

Consider solutions of the general cubic equation

Ax3 + 3Bx2 + 3Cx + D = 0, where A − D are rational constants.
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If the substitution y = Ax + B is made, the equation becomes

             y3 + 3Hy + G = 0

where

   H = AC − B2  

and

   G = A2D − 3ABC + 2B3.

The cubic has three real roots if G2 + 4H3 < 0 and two imaginary roots if G2

+ 4H3 > 0.  (See any standard work on the Theory of Equations).

If all the roots are real, a trigonometrical method can be used to obtain

the solutions, as follows:

the Fourier series of cos3u is

       cos3u = (3/4)cosu + (1/4)cos3u.

Putting

    y = scosu in the equation y3 + 3Hy + G = 0

(s > 0),

gives

    cos3u + (3H/s2)cosu + G/s3 = 0.

Comparing the Fourier series with this equation leads to

    s = 2 √(−H)

and

       cos3u = −4G/s3.

If v is any value of u satisfying cos3u = −4G/s3, the general solution is
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            3u = 2nπ ± 3v, where n is an integer.

Three different values of cosu are given by

     u = v, and 2π/3 ± v.

The three solutions of the given cubic equation are then

     scosv, and scos(2π/3 ± v).

Consider solutions of the equation

          x3 − 3x + 1 = 0.

In this case,

       H = −1 and G2 + 4H3 = −3.

All the roots are therefore real, and they are given by solving

  cos3u = −4G/s3 = −4(1/8) = −1/2

or,

                         3u = cos-1(−1/2).

The values of u are therefore 2π/9, 4π/9, and 8π/9, and the roots are

   x1 = 2cos(2π/9), x2 = 2cos(4π/9), and x3 = 2cos(8π/9).

2.2. Symmetries of the roots

The roots x1, x2, and x3 exhibit a simple pattern.  Relationships among

them can be readily found by writing them in the complex form 2cosθ = e iθ +

e-iθ where θ = 2π/9 so that

   x1 = e iθ + e -iθ ,

   x2 = e2iθ + e -2iθ ,
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and

   x3 = e4iθ + e -4iθ .

Squaring these values gives

           x1
2 = x2 + 2,

           x2
2 = x3 + 2,

and

           x3
2 = x1 + 2.

The relationships among the roots have the functional form f(x1,x2,x3) = 0.

Other relationships exist; for example, by considering the sum of the roots we

find

  x1 + x2
2 + x2 − 2 = 0

  x2 + x3
2 + x3 − 2 = 0,

and

  x3 + x1
2 + x1 − 2 = 0.

Transformations from one root to another can be made by doubling-the-

angle, .

The functional relationships among the roots have an algebraic

symmetry associated with them under interchanges (substitutions) of the

roots.  If  is the operator that changes f(x1,x2,x3) into f(x2,x3,x1) then

      f(x1,x2,x3) → f(x2,x3,x1),

     2f(x1,x2,x3) → f(x3,x1,x2),

and
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     3f(x1,x2,x3) → f(x1,x2,x3).

The operator 3 = I, is the identity.

In the present case,

   (x1
2 − x2 − 2) = (x2

2 − x3 − 2) = 0,

and

  2(x1
2 − x2 − 2) = (x3

2 − x1 − 2) = 0.

2.3. The Galois group of an equation.

The set of operators {I, , 2} introduced above, is called the Galois

group of the equation x3 − 3x + 1 = 0. (It will be shown later that it is

isomorphic to the cyclic group, C3).

The elements of a Galois group are operators that interchange the

roots of an equation in such a way that the transformed functional

relationships are true relationships.  For example, if the equation

 x1 + x2
2 + x2 − 2 = 0

is valid, then so is

     (x1 + x2
2 + x2 − 2 ) = x2 + x3

2 + x3 − 2 = 0.

True functional relationships are polynomials with rational coefficients.

2.4. Algebraic fields

We now consider the Galois procedure in a more general way.  An

algebraic solution of the general nth - degree polynomial

     aox
n + a1x

n-1 + ... an = 0

is given in terms of the coefficients ai using a finite number of operations (+,-

,×,÷,√).  The term "solution by radicals" is sometimes used because the
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operation of extracting a square root is included in the process.  If an infinite

number of operations is allowed, solutions of the general polynomial can be

obtained using transcendental functions.  The coefficients ai necessarily belong

to a field which is closed under the rational operations.  If the field is the set

of rational numbers, Q, we need to know whether or not the solutions of a

given equation belong to Q.  For example, if

      x2 − 3 = 0

we see that the coefficient -3 belongs to Q, whereas the roots of the equation,

xi = ± √3, do not.  It is therefore necessary to extend Q to Q', (say) by

adjoining numbers of the form a√3 to Q, where a is in Q.

In discussing the cubic equation x3 − 3x + 1 = 0 in 2.2, we found

certain functions of the roots f(x1,x2,x3) = 0 that are symmetric under

permutations of the roots.  The symmetry operators formed the Galois group

of the equation.

For a general polynomial:

       xn + a1x
n-1 + a2x

n-2 + .. an = 0,

functional relations of the roots are given in terms of the coefficients in the

standard way

     x1 + x2 + x3 ..                   ..   + xn         = −a1

     x1x2 + x1x3 + .. x2x3 + x2x4 + ..+ xn-1xn     =  a2

     x1x2x3 + x2x3x4 + ..             .. + xn-2xn-1xn = −a3

     .     .
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     x1x2x3 ..                                   .. xn-1xn  =  ±an.

Other symmetric functions of the roots can be written in terms of these

basic symmetric polynomials and, therefore, in terms of the coefficients.

Rational symmetric functions also can be constructed that involve the roots

and the coefficients of a given equation.  For example, consider the quartic

     x4 + a2x
2 + a4 = 0.

The roots of this equation satisfy the equations

                   x1 + x2 + x3 + x4 = 0

                   x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = a2

                   x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = 0

                   x1x2x3x4 = a4.

We can form any rational symmetric expression from these basic

equations (for example, (3a4
3 − 2a2)/2a4

2 = f(x1,x2,x3,x4)).  In general, every

rational symmetric function that belongs to the field F of the coefficients, ai, of

a general polynomial equation can be written rationally in terms of the

coefficients.

The Galois group, Ga, of an equation associated with a field F therefore

has the property that if a rational function of the roots of the equation is

invariant under all permutations of Ga, then it is equal to a quantity in F.

Whether or not an algebraic equation can be broken down into simpler

equations is important in the theory of equations.  Consider, for example, the

equation

                     x6 = 3.
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It can be solved by writing x3 = y, y2 = 3 or

     x = (√3)1/3.

To solve the equation, it is necessary to calculate square and cube roots

 not sixth roots.  The equation x6 = 3 is said to be compound (it can be

broken down into simpler equations), whereas x2 = 3 is said to be atomic.

The atomic properties of the Galois group of an equation reveal

the atomic nature of the equation, itself.  (In Chapter 5, it will be seen that a

group is atomic ("simple") if it contains no proper invariant subgroups).

The determination of the Galois groups associated with an arbitrary

polynomial with unknown roots is far from straightforward.  We can gain

some insight into the Galois method, however, by studying the group

structure of the quartic

              x4 + a2x
2 + a4 = 0

with known roots

         x1 = ((−a2 + µ)/2)1/2 , x2 = −x1,

          x3 = ((−a2 − µ)/2)1/2 , x4 = −x3,

where

                       µ = (a 2
2 − 4a4)

1/2.

The field F of the quartic equation contains the rationals Q, and the

rational expressions formed from the coefficients a2 and a4.

The relations

         x1 + x2 = x3 + x4 = 0
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are in the field F.

Only eight of the 4! possible permutations of the roots leave these

relations invariant in F; they are

            x1 x2 x3 x4            x1 x2 x3 x4           x1 x2 x3 x4   
{ P1 =                     ,  P2 =                    , P3  =                     ,
            x1 x2 x3 x4            x1 x2 x4 x3           x2 x1 x3 x4   
            x1 x2 x3 x4           x1 x2 x3 x4            x1 x2 x3 x4   
   P4 =                      , P5 =                     , P6 =                      ,
            x2 x1 x4 x3            x3 x4 x1 x2           x3 x4 x2 x1 
            x1 x2 x3 x4           x1 x2 x3 x4    
   P7 =                      , P8  =                   }.
            x4 x3 x1 x2           x4 x3 x2 x1   

The set {P1,...P8} is the Galois group of the quartic in F.  It is a subgroup of

the full set of twentyfour permutations.  We can form an infinite number of

true relations among the roots in F.  If we extend the field F by adjoining

irrational expressions of the coefficients, other true relations among the roots

can be formed in the extended field, F'.  Consider, for example, the extended

field formed by adjoining µ (= (a2
2 − 4a4)) to F so that the relation

             x1
2 − x3

2 = µ is in F'.

We have met the relations

                    x1  = −x2  and x3  = −x4

so that

                    x1
2 =  x2

2 and x3
2 =  x4

2.

Another relation in F' is therefore

             x2
2 − x4

2 = µ.

The permutations that leave these relations true in F' are then
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    {P1, P2, P3, P4}.

This set is the Galois group of the quartic in F'.  It is a subgroup of the set

{P1,...P8}.

If we extend the field F' by adjoining the irrational expression           

((−a2 − µ)/2)1/2 to form the field F'' then the relation

               x3 − x4 = 2((−a2 − µ)/2)1/2 is in F''.

This relation is invariant under the two permutations

   {P1, P3}.

This set is the Galois group of the quartic in F''.  It is a subgroup of the set

{P1, P2, P3, P4}.

If, finally, we extend the field F'' by adjoining the irrational           

((−a2 + µ)/2)1/2 to form the field F''' then the relation

                  x1 − x2 = 2((−a2 − µ)/2)1/2 is in F'''.

This relation is invariant under the identity transformation, P1 , alone; it is

the Galois group of the quartic in F''.  

The full group, and the subgroups, associated with the quartic equation

are of order 24, 8, 4, 2, and 1.  (The order of a group is the number of

distinct elements that it contains).  In 5.4, we shall prove that the order of a

subgroup is always an integral divisor of the order of the full group.  The

order of the full group divided by the order of a subgroup is called the index

of the subgroup.

Galois introduced the idea of a normal or invariant subgroup: if H is a

normal subgroup of G then



14

        HG − GH = [H,G] = 0.

(H commutes with every element of G, see 5.5).

Normal subgroups are also called either invariant or self-conjugate subgroups.

A normal subgroup H is maximal if no other subgroup of G contains H.

2.5. Solvability of polynomial equations

Galois defined the group of a given polynomial equation to be either

the symmetric group, Sn, or a subgroup of Sn, (see 5.6).  The Galois method

therefore involves the following steps:

1.  The determination of the Galois group, Ga, of the equation.

2.  The choice of a maximal subgroup of Hmax(1).  In the above case, {P1, ...P8}

is a maximal subgroup of Ga = S4.

3.  The choice of a maximal subgroup of Hmax(1) from step 2.

In the above case, {P1,..P4} = Hmax(2) is a maximal subgroup of Hmax(1).

The process is continued until Hmax = {P1} = {I}.

The groups Ga, Hmax(1), ..,Hmax(k) = I, form a composition series.  The

composition indices are given by the ratios of the successive orders of the

groups:

   gn/h(1), h(1)/h(2), ...h(k-1)/1.

The composition indices of the symmetric groups Sn for n = 2 to 7 are found

to be:

      n   Composition Indices

      2   2
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      3   2, 3

      4   2, 3, 2, 2

      5   2, 60

      6   2, 360

      7   2, 2520

We shall state, without proof, Galois' theorem:

A polynomial equation can be solved algebraically if and only if its

group is solvable.

Galois defined a solvable group as one in which the composition indices are

all prime numbers.  Furthermore, he showed that if n > 4, the sequence of

maximal normal subgroups is Sn, An, I, where An is the Alternating Group

with (n!)/2 elements.  The composition indices are then 2 and (n!)/2.  For n >

4, however, (n!)/2 is not prime, therefore the groups Sn are not solvable for n

> 4.  Using Galois' Theorem, we see that it is therefore not possible to solve,

algebraically, a general polynomial equation of degree n > 4.

3

SOME ALGEBRAIC INVARIANTS

     Although algebraic invariants first appeared in the works of Lagrange and

Gauss in connection with the Theory of Numbers, the study of algebraic

invariants as an independent branch of Mathematics did not begin until the

work of Boole in 1841.  Before discussing this work, it will be convenient to

introduce matrix versions of real bilinear forms, B, defined by
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                               B = ∑i=1
m ∑j=1

n aijxiyj  

where

                               x = [x1,x2,...xm], an m-vector,

                               y = [y1,y2,...yn], an n-vector,

and aij are real coefficients.  The square brackets denote a

column vector.

In matrix notation, the bilinear form is

                               B = xTAy

where

                                        a11 .   .   .  a1n   

                                         .   .   .   .         

                              A =     .   .   .   .      .   

                                        .   .   .   .          

                                        am1.   .   .  amn    

The scalar product of two n-vectors is seen to be a special case of a

bilinear form in which A = I.

If x = y, the bilinear form becomes a quadratic form, Q:

                               Q = xTAx.

3.1. Invariants of binary quadratic forms

Boole began by considering the properties of the binary

quadratic form

              Q(x,y) = ax2 + 2hxy + by2

under a linear transformation of the coordinates
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                     x' = Mx

where

              x  = [x,y],

              x' = [x',y'],

and

                               i   j   
             M  =           .
                      k  l 

The matrix M transforms an orthogonal coordinate system into an

oblique coordinate system in which the new x'- axis has a slope (k/i), and the

new y'- axis has a slope (l/j), as shown:

       y                                                   
                                                           
                                                           

                  y′                                       
                                                    [i+j,k+l]  
                                                           
                                                           

             [j,l]                                           
                                          x'               
                                                            
                                                           

   [0,1]                     [1,1]                       
                                                       x′
                                            [i,k]           
                                                           
                                                           
                                                            

   [0,0]                   [1,0]                       x
  

The transformation of a unit square under M.
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The transformation is linear, therefore the new function Q'(x',y') is a

binary quadratic:

                     Q'(x',y') = a'x'2 + 2h'x'y' + b'y'2.

The original function can be written

               Q(x,y) = xTDx

where

                                        a  h  
                      D =           ,

                                        h  b  

and the determinant of D is

                  detD = ab − h2, called the discriminant of Q.

The transformed function can be written

                     Q'(x',y') = x'TD'x'

where

                                       a' h'
                     D' =           ,

                                       h' b'
and

                 detD' = a'b' − h'2, the discriminant of Q'.

Now,

                      Q'(x',y') = (Mx)TD'Mx

                = xTMTD'Mx

and this is equal to Q(x,y) if

                      MTD'M = D.
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The invariance of the form Q(x,y) under the coordinate transformation M

therefore leads to the relation

               (detM)2detD' = detD

because

                detMT = detM.

The explicit form of this equation involving determinants is

          (il − jk)2(a'b' − h'2) = (ab − h2).

The discriminant (ab - h2) of Q is said to be an invariant

of the transformation because it is equal to the discriminant (a'b' − h'2) of Q',

apart from a factor (il − jk)2 that depends on the transformation itself, and not

on the arguments a,b,h of the function Q.

3.2. General algebraic invariants

The study of general algebraic invariants is an important branch of

Mathematics.

A binary form in two variables is

              f(x1,x2) = aox1
n + a1x1

n-1x2 + ...anx2
n

                        = ∑ aix1
n-ix2

i

If there are three or four variables, we speak of ternary forms or quaternary

forms.

A binary form is transformed under the linear transformation M as

follows

    f(x1,x2) => f'(x1',x2') = ao'x1'
n + a1'x1'

n-1x2' + ..

The coefficients
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                    ao, a1, a2,..≠  ao', a1', a2' ..

and the roots of the equation

                       f(x1,x2) = 0

differ from the roots of the equation

                    f'(x1',x2') = 0.

Any function I(ao,a1,...an) of the coefficients of f that satisfies

           rwI(ao',a1',...an') = I(ao,a1,...an)

is said to be an invariant of f if the quantity r depends only on the

transformation matrix M, and not on the coefficients ai of the function being

transformed.  The degree of the invariant is the degree of the coefficients, and

the exponent w is called the weight.  In the example discussed above, the

degree is two, and the weight is two.

Any function, C, of the coefficients and the variables of a form f that is

invariant under the transformation M, except for a multiplicative factor that is

a power of the discriminant of M, is said to be a covariant of f.  For binary

forms, C therefore satisfies

 rwC(ao',a1',...an'; x1',x2') = C(ao,a1,...an; x1,x2).

It is found that the Jacobian of two binary quadratic forms, f(x1,x2) and

g(x1,x2), namely the determinant

                          ∂f/∂x1  ∂f/∂x2     
                                

                          ∂g/∂x1  ∂g/∂x2    

where ∂f/∂x1 is the partial derivative of f with respect to x1 etc., is a

simultaneous covariant of weight one of the two forms.
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The determinant

                    ∂2f/∂x1
2    ∂2f/∂x1∂x2    

                                                  ,
                    ∂2g/∂x2∂x1  ∂2g/∂x2

2      

called the Hessian of the binary form f, is found to be a covariant of weight

two.  A full discussion of the general problem of algebraic invariants is outside

the scope of this book.  The following example will, however, illustrate the

method of finding an invariant in a particular case.

Example:

To show that

  (aoa2 − a1
2)(a1a3 − a2

2) − (aoa3 − a1a2)
2/4

is an invariant of the binary cubic

  f(x,y) = aox
3 + 3a1x

2y + 3a2xy2 + a3y
3

under a linear transformation of the coordinates.

The cubic may be written

          f(x,y) = (aox
2+2a1xy+a2y

2)x + (a1x
2+2a2xy+a3y

2)y

                   = xTDx

where

                x = [x,y],

and

                       aox + a1y  a1x + a2y    
              D =                                .
                       a1x + a2y  a2x + a3y     
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Let x be transformed to x': x' = Mx, where

                        i  j   
               M =          
                        k  l   

then

          f(x,y) = f'(x',y')

if

               D = MTD'M.

Taking determinants, we obtain

           detD = (detM)2detD',

an invariant of f(x,y) under the transformation M.

In this case, D is a function of x and y.  To emphasize this point, put

           detD = φ(x,y)

and

           detD'= φ'(x',y')

so that

         φ(x,y) = (detM)2φ'(x',y'

                   = (aox + a1y)(a2x + a3y) − (a1x + a2y)2

                   = (aoa2 − a1
2)x2 + (aoa3 − a1a2)xy + (a1a3 − a2

2)y2

                   = xTEx,

where
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                       (aoa2 − a1
2 )      (aoa3 − a1a2)/2    

               E =                                            .
                       (aoa3 − a1a2)/2    (a1a3 − a2

2 )      

Also, we have

      φ'(x',y') = x'TE'x'

                   = xTMTE'Mx

therefore

           xTEx = (detM)2xTMTE'Mx

so that

                E = (detM)2MTE'M.

Taking determinants, we obtain

            detE = (detM)4detE'

                   = (aoa2 − a1
2)(a1a3 − a2

2) − (aoa3 − a1a2)
2/4  

                   = invariant of the binary cubic f(x,y) under the transformation

x' = Mx.

4

SOM E INV ARIAN TS OF  PHYS ICS

4.1 . Gal ilean  inv arian ce.

Eve nts of fin ite ext ensio n and  dur ation  are  par t of the  phy sical 

wor ld.  It wil l be con venie nt to int roduc e the  not ion of ide al eve nts tha t

hav e nei ther ext ensio n nor  dur ation .  Ide al eve nts may  be rep resen ted as

mat hemat ical poi nts in a spa ce-ti me geo metry .  A par ticul ar eve nt, E, is

des cribe d by the  fou r com ponen ts [t, x,y,z ] whe re t is the  tim e of the  eve nt,
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and  x,y ,z, are  its  thr ee spa tial coo rdina tes. The  tim e and  spa ce coo rdina tes

are  ref erred  to arb itrar ily cho sen ori gins.   The  spa tial mes h nee d not  be

Car tesia n.

Let  an eve nt E[t, x], rec orded  by an obs erver  O at the  ori gin of an x-

axi s, be rec orded  as the  eve nt E'[t ',x']  by a sec ond obs erver  O',  mov ing at

con stant  spe ed V alo ng the  x-a xis.  We sup pose tha t the ir clo cks are 

syn chron ized at t = t' = 0 whe n the y coi ncide  at a com mon ori gin, x = x' =

0.

At tim e t, we wri te the  pla usibl e equ ation s

   t' = t

and 

    x' = x - Vt, 

whe re Vt is the  dis tance  tra velle d by O' in a tim e t.  The se equ ation s can 

be wri tten

E'  = GE

whe re

      1    0    
  G  =                .
    −V   1    

G is the  ope rator  of the  Gal ilean  tra nsfor matio n.

The  inv erse equ ation s are 

   t  = t'

and 

  x  = x' + Vt' 
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or

   E  = G-1E'

whe re G-1 is the  inv erse Gal ilean  ope rator .  (It  und oes the  eff ect of G).

If we mul tiply  t and  t' by the  con stant s k and  k',  res pecti vely,  whe re

k and  k' hav e dim ensio ns of vel ocity  the n all  ter ms hav e dim ensio ns of

len gth.

In spa ce-sp ace, we hav e the  Pyt hagor ean for m x2 + y2 = r2, an

inv arian t und er rot ation s.  We are  the refor e led  to ask  the  que stion : is  

(kt )2 + x2 inv arian t und er the  ope rator  G in spa ce-ti me?  Cal culat ion giv es

         (kt )2 + x2  = (k' t')2 + x'2 + 2Vx 't' + V2t'2

       = (k' t')2 + x'2  onl y if V = 0.

We see , the refor e, tha t Gal ilean  spa ce-ti me is not  Pyt hagor ean in its 

alg ebrai c for m.  We not e, how ever,  the  key  rol e pla yed by acc elera tion in

Gal ilean -Newt onian  phy sics: 

The  vel ociti es of the  eve nts acc ordin g to O and  O' are  obt ained  by

dif feren tiati ng the  equ ation  x' = −Vt + x wit h res pect to tim e, giv ing

    v' = −V + v,

a pla usibl e res ult, bas ed upo n our  exp erien ce.

Dif feren tiati ng v' with  res pect to tim e giv es

        dv' /dt' = a' = dv/ dt = a

whe re a and  a' are  the  acc elera tions  in the  two  fra mes of ref erenc e.  The 

cla ssica l acc elera tion is inv arian t und er the  Gal ilean  tra nsfor matio n.  If the 

rel ation ship v' = v − V is use d to des cribe  the  mot ion of a pul se of lig ht,
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mov ing in emp ty spa ce at v = c ≅ 3 x 108 m/s , it doe s not  fit  the  fac ts.  All 

stu dies of ver y hig h spe ed par ticle s tha t emi t ele ctrom agnet ic rad iatio n

sho w tha t v' = c for  all  val ues of the  rel ative  spe ed, V.

4.2 . Lor entz inv arian ce and  Ein stein 's spa ce-ti me  

     sym metry .

It was  Ein stein , abo ve all  oth ers, who  adv anced  our  und ersta nding  of

the  tru e nat ure of spa ce-ti me and  rel ative  mot ion.  We sha ll see  tha t he

mad e use  of a sym metry  arg ument  to fin d the  cha nges tha t mus t be mad e

to the  Gal ilean  tra nsfor matio n if it is to acc ount for  the  rel ative  mot ion of

rap idly mov ing obj ects and  of bea ms of lig ht.  He rec ogniz ed an

inc onsis tency  in the  Gal ilean -Newt onian  equ ation s, bas ed as the y are , on

eve ryday  exp erien ce.  Her e, we sha ll res trict  the  dis cussi on to non -

acc elera ting,  or so cal led ine rtial , fra mes

We hav e see n tha t the  cla ssica l equ ation s rel ating  the  eve nts E and 

E' are  E' = GE, and  the  inv erse E = G-1E'

whe re

                          1   0                     1   0     
             G  =              and  G-1  =           .  
                        −V  1                     V   1     

The se equ ation s are  con necte d by the  sub stitu tion  V ↔ −V; thi s is an

alg ebrai c sta temen t of the  New tonia n prin ciple  of rel ativi ty.  Ein stein 

inc orpor ated thi s pri ncipl e in his  the ory.  He als o ret ained  the  lin earit y of

the  cla ssica l equ ation s in the  abs ence of any  evi dence  to the  con trary .
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(Eq uispa ced int erval s of tim e and  dis tance  in one  ine rtial  fra me rem ain

equ ispac ed in any  oth er ine rtial  fra me).  He the refor e sym metri zed the 

spa ce-ti me equ ation s as fol lows: 

                  t'         1  −V    t      
                     =                       .
                   x'       −V   1    x      

Not e, how ever,  the  inc onsis tency  in the  dim ensio ns of the  tim e-equ ation 

tha t has  now  bee n int roduc ed:

           t' =  t − Vx. 

The  ter m Vx has  dim ensio ns of [L] 2/[T ], and  not  [T] .  Thi s can  be

cor recte d by int roduc ing the  inv arian t spe ed of lig ht, c  a pos tulat e in

Ein stein 's the ory tha t is con siste nt wit h exp erime nt:

                  ct'  = ct − Vx/ c

so tha t all  ter ms now  hav e dim ensio ns of len gth.

Ein stein  wen t fur ther,  and  int roduc ed a dim ensio nless  qua ntity  γ

ins tead of the  sca ling fac tor of uni ty tha t app ears in the  Gal ilean  equ ation s

of spa ce-ti me.  Thi s fac tor mus t be con siste nt wit h all  obs ervat ions.   The 

equ ation s the n bec ome

            ct'  =     γct − βγx

              x' = −βγct +   γx, whe re β=V/ c.

The se can  be wri tten

                   E'  = LE,
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whe re

                               γ  −βγ    
                      L  =              , and  E = [ct ,x]
                              −βγ    γ    

L is the  ope rator  of the  Lor entz tra nsfor matio n.

The  inv erse equ ation  is

                   E   = L-1E'

whe re

                      γ   βγ    
                    L-1 =                  .

                     βγ    γ    

Thi s is the  inv erse Lor entz tra nsfor matio n, obt ained  fro m L by cha nging 

β → −β (or  ,V → −V);  it has  the  eff ect of und oing the  tra nsfor matio n L.

We can  the refor e wri te

                LL-1 = I

or

           γ  −βγ      γ   βγ          1   0    
           =             .

       −βγ   γ       βγ   γ           0   1    

Equ ating  ele ments  giv es

          γ2 − β2γ2 = 1

the refor e,

                             γ = 1/√(1 − β2) (ta king the  pos itive  roo t).
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4.3 . The  inv arian t int erval .

Pre vious ly, it was  sho wn tha t the  spa ce-ti me of Gal ileo and  New ton

is not  Pyt hagor ean in for m.  We now  ask  the  que stion : is Ein stein ian spa ce-

tim e Pyt hagor ean in for m?  Dir ect cal culat ion lea ds to

        (ct )2 + (x) 2 = γ2(1 + β2)(c t')2 + 4βγ2x'c t'

                         +γ2(1 + β2)x' 2

                       ≠ (ct ')2 + (x' )2 if β > 0.

Not e, how ever,  tha t the  dif feren ce of squ ares is an

inv arian t und er L:

        (ct )2 − (x) 2 = (ct ')2 − (x' )2

bec ause

         γ2(1 − β2) = 1.

Spa ce-ti me is sai d to be pse udo-E uclid ean.

The  neg ative  sig n tha t cha racte rizes  Lor entz inv arian ce can  be

inc luded  in the  the ory in a gen eral way  as fol lows. 

We int roduc e two  kin ds of 4-v ector s

            xµ = [x0, x1, x2, x3], a con trava riant  vec tor,

and 

           xµ = [x0, x1, x2, x3], a cov arian t vec tor, whe re

           xµ = [x0,−x1,−x2,−x3].

The  sca lar pro duct of the  vec tors is def ined as

       xµTxµ = (x0, x1, x2, x3)[x 0,−x1,−x2,−x3]
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               = (x0)2 − ((x 1)2 + (x2)2 + (x3)2)

The  eve nt 4-v ector  is

                    Eµ = [ct , x, y, z] and  the  cov arian t for m is

                    Eµ = [ct ,−x,−y,−z]

so tha t the  Lor entz inv arian t sca lar pro duct is

               EµTEµ = (ct )2 − (x2 + y2 + z2).

The  4-v ector  xµ tra nsfor ms as fol lows: 

                   x'µ = Lxµ

whe re

                                 γ  −βγ   0    0    
                             −βγ     γ    0    0   

                      L =                             .
                                  0    0    1    0   
                                  0    0    0    1    

Thi s is the  ope rator  of the  Lor entz tra nsfor matio n if the  mot ion of O' is

alo ng the  x-a xis of O's  fra me of ref erenc e.

Imp ortan t con seque nces of the  Lor entz tra nsfor matio n are  tha t

int erval s of tim e mea sured  in two  dif feren t ine rtial  fra mes are  not  the  sam e

but  are  rel ated  by the  equ ation 

                  ∆t' = γ∆t

whe re ∆t is an int erval  mea sured  on a clo ck at res t in O's  fra me, and 

dis tance s are  giv en by

                  ∆l' = ∆l/γ

whe re ∆l is a len gth mea sured  on a rul er at res t in O's  fra me.
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4.4 . The  ene rgy-m oment um inv arian t.

     A dif feren tial tim e int erval , dt,  can not be use d in a Lor entz- invar iant

way  in kin emati cs.  We mus t use  the  pro per tim e dif feren tial int erval , dτ,

def ined by

       (cd t)2 − dx2 = (cd t')2 − dx' 2 ≡ (cd τ)2.

     The  New tonia n 3-v eloci ty is

                   vN = [dx /dt, dy/ dt, dz/ dt],

and  thi s mus t be rep laced  by the  4-v eloci ty

                   Vµ = [d( ct)/d τ, dx/ dτ, dy/ dτ, dz/ dτ]

                        = [d( ct)/d t, dx/ dt, dy/ dt, dz/ dt]dt /dτ

                        = [γc,γvN] .

The  sca lar pro duct is the n

               VµVµ = (γc)2 − (γvN)2

                       = (γc)2(1 − (vN/c) 2)

                       = c2.

(In  for ming the  sca lar pro duct,  the  tra nspos e is und ersto od).

The  mag nitud e of the  4-v eloci ty is Vµ = c, the  inv arian t spe ed of lig ht.

     In Cla ssica l Mec hanic s, the  con cept of mom entum  is imp ortan t bec ause

of its  rol e as an inv arian t in an iso lated  sys tem.  We the refor e int roduc e the 

con cept of 4-m oment um in Rel ativi stic Mec hanic s in ord er to fin d

pos sible  Lor entz inv arian ts inv olvin g thi s new  qua ntity .  The  con trava riant 

4-m oment um is def ined as: 
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                    Pµ = mVµ

whe re m is the  mas s of the  par ticle . (It  is a Lor entz sca lar, the  mas s

mea sured  in the  fra me in whi ch the  par ticle  is at res t).

     The  sca lar pro duct is

                 PµPµ = (mc )2.

Now ,

                    Pµ = [mγc, mγvN]

the refor e,

                 PµPµ = (mγc)2 − (mγvN)2.

Wri ting

                    M = γm, the  rel ativi stic mas s, we obt ain

                 PµPµ = (Mc )2 − (Mv N)2 = (mc )2.

Mul tiply ing thr ougho ut by c2 giv es

   M2c4 − M2vN
2c2 = m2c4.

The  qua ntity  Mc2 has  dim ensio ns of ene rgy; we the refor e wri te

                     E = Mc2

the  tot al ene rgy of a fre ely mov ing par ticle .

Thi s lea ds to the  fun damen tal inv ari ant of dyn amics 

                c2PµPµ = E2 − (pc )2 = Eo2

whe re

                     Eo = mc2 is the  res t ene rgy of the  par ticle , and 

p is its  rel ativi stic 3-m oment um.
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     The  tot al ene rgy can  be wri tten: 

                      E = γEo = Eo + T,

whe re

                      T = Eo(γ − 1), 

the  rel ativi stic kin etic ene rgy.

     The  mag nitud e of the  4-m oment um is a Lor entz inv arian t

                 Pµ = mc. 

The  4- mom entum  tra nsfor ms as fol lows: 

                   P'µ = LPµ.

For  rel ative  mot ion alo ng the  x-a xis, thi s equ ation  is equ ivale nt to the 

equ ation s

                    E' =   γE − βγcpx

and 

                   cpx = -βγE +  γcpx .

     Usi ng the  Pla nck-E inste in equ ation s E = hν and 

E = pxc for  pho tons,  the  ene rgy equ ation  bec omes

                    ν' = γν − βγν

                       = γν(1 − β)

                       =  ν(1 − β)/( 1 − β2)1/2 

                       =  ν[(1  − β)/( 1 + β)]1/2  .

Thi s is the  rel ativi stic Dop pler shi ft for  the  fre quenc y ν', mea sured  in an

ine rtial  fram e (pr imed)  in ter ms of the  fre quenc y ν mea sured  in ano ther

ine rtial  fra me (un prime d).
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4.5 . The  fre quenc y-wav enumb er inv arian t

Par ticle -Wave  dua lity,  one  of the  mos t pro found 

dis cover ies in Phy sics,  has  its  ori gins in Lor entz inv arian ce.  It was 

pro posed  by deB rogli e in the  ear ly 192 0's.  He use d the  fol lowin g

arg ument .

     The  dis place ment of a wav e can  be wri tten

               y(t ,r) = Aco s(ωt − k•r)

whe re ω = 2πν (th e ang ular fre quenc y), k = 2π/λ (th e wav enumb er),

and  r = [x,  y, z] (th e pos ition  vec tor).   The  pha se (ωt − k•r) can  be

wri tten ((ω/c) ct − k•r), and  thi s has  the  for m of a Lor entz inv arian t

obt ained  fro m the  4-v ector s

          Eµ[ct , r], and  Kµ[ω/c,  k]

whe re Eµ is the  eve nt 4-v ector , and  Kµ is the  "fr equen cy-wa venum ber" 4-

vec tor.

     deB rogli e not ed tha t the  4-m oment um Pµ is con necte d to the  eve nt 4-

vec tor Eµ thr ough the  4-v eloci ty Vµ, and  the  fre quenc y-wav enumb er 4-

vec tor Kµ is con necte d to the  eve nt 4-v ector  Eµ thr ough the  Lor entz

inv arian t pha se of a wav e ((ω/c) ct − k r).  He the ref ore pro posed  tha t a

dir ect con necti on mus t exi st bet ween Pµ and  Kµ;  it is ill ustra ted

in the  fol lowin g dia gram: 
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                                      Eµ[ct ,r]                                      
                                                                                      

  (Ei nstei n) PµPµ=in v.                       EµKµ=in v. (de Brogl ie)
                                                                                      

                 Pµ[E/ c,p]                            Kµ[ω/c, k]                
                                                                                       

                                  (de Brogl ie)

      The  cou pling  bet ween Pµ and  Kµ via  Eµ.

     deB rogli e pro posed  tha t the   con necti on is the  sim plest  pos sible ,

nam ely, Pµ and  Kµ are  pro porti onal to eac h oth er.  He rea lized  tha t the re

cou ld be onl y one  val ue for  the  con stant  of pro porti onali ty if the  Pla nck-

Ein stein  res ult for  pho tons E = hω/2π is but  a spe cial cas e of a gen eral

res ult, it mus t be h/2 π, whe re h is Pla nck’s  con stant .  The refor e, deB rogli e

pro posed  tha t

                  Pµ ∝ Kµ

or

                  Pµ = (h/ 2π)Kµ.

Equ ating  the  ele ments  of the  4-v ector s giv es

                  E  = (h/ 2π)ω

and 

                  p  = (h/ 2π)k .

In the se rem arkab le equ ation s, our  not ions of par ticle s and  wav es are 

for ever mer ged.  The  sma llnes s of the  val ue of Pla nck's  con stant  pre vents 
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us fro m obs ervin g the  dua lity dir ectly ; how ever,  it is cle arly obs erved  at

the  mol ecula r, ato mic, nuc lear,  and  parti cle lev el.

4.6 . deB rogli e's inv arian t.

     The  inv arian t for med fro m the  fre quenc y-wav enumb er 4-v ector  is

                KµKµ = (ω/c,  k)[ω/c, −k]

                       = (ω/c) 2 − k2 = (ωo/c) 2, whe re ωo is the  pro per

ang ular fre quenc y.

     Thi s inv arian t is the  wav e ver sion of Ein stein 's

ene rgy-m oment um inv arian t; it giv es the  dis persi on rel ation 

                  ωo2 = ω2 − (kc )2.

The  rat io ω/k is the  pha se vel ocity  of the  wav e, vφ.

For  a wav e-pac ket, the  gro up vel ocity  vG is dω/dk ; it can  be obtai ned by

dif feren tiati ng the  dis persi on equ ation  as fol lows: 

                       ωdω − kc2dk = 0

the refor e,

                    vG = dω/dk  = kc2/ω.

     The  deB rogli e inv arian t inv olvin g the  pro duct of the  pha se and  gro up

vel ocity  is the refor e

                  vφvG = (ω/k) .(kc2/ω) = c2.

     Thi s is the  wav e-equ ivale nt of Ein stein 's fam ous

   E = Mc2.

We see  tha t
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                 vφvG = c2 = E/M 

or, 

                    vG = E/M vφ = Ek/ Mω = p/M  = vN, the  par ticle 

vel ocity .

Thi s res ult pla yed an imp ortan t par t in the  dev elopm ent of Wav e

Mec hanic s.

     We sha ll fin d in lat er cha pters , tha t Lor entz tra nsfor matio ns for m a

gro up, and  tha t inv arian ce pri ncipl es are  rel ated dir ectly  to sym metry 

tra nsfor matio ns and  the ir ass ociat ed gro ups.

5

GROUPS — CONCRETE AND ABSTRACT

5.1  Some concrete examples

The elements of the set {±1, ±i}, where i = √−1, are the roots of the

equation x4 = 1, the “fourth roots of unity”.  They have the following special

properties:

1.  The product of any two elements of the set (including the same two

elements) is always an element of the set.  (The elements obey closure).

2.  The order of combining pairs in the triple product of any elements

of the set does not matter.  (The elements obey associativity).

3.  A unique element of the set exists such that the product of any

element of the set and the unique element (called the identity) is equal to the

element itself.  (An identity element exists).
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4.  For each element of the set, a corresponding element exists such

that the product of the element and its corresponding element (called the

inverse) is equal to the identity.  (An inverse element exists).

The set of elements {±1, ±i} with these four properties is said to form

a GROUP.

In this example, the law of composition of the group is multiplication; this

need not be the case.  For example, the set of integers Z = {.., −2, −1, 0, 1, 2,

...} forms a group if the law of composition is addition.  In this group, the

identity element is zero, and the inverse of each integer is the integer with the

same magnitude but with opposite sign.  

In a different vein, we consider the set of 4×4 matrices:

                     1 0 0 0      0 0 0 1      0 0 1 0     0 1 0 0
       {M} =    0 1 0 0   ,  1 0 0 0   ,    0 0 0 1 ,  0 0 1 0 .
                     0 0 1 0      0 1 0 0      1 0 0 0     0 0 0 1
                     0 0 0 1      0 0 1 0      0 1 0 0     1 0 0 0  

If the law of composition is matrix multiplication , then {M} is found to obey:

1 --closure

and

2 --associativity,

and to contain:

3 --an identity, diag(1, 1, 1, 1),

and

4 --inverses.

The set {M} forms a group under matrix multilication.
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5.2. Abstract groups

The examples given above illustrate the generality of the group

concept.  In the first example, the group elements are real and imaginary

numbers, in the second, they are positive and negative integers, and in the

third, they are matrices that represent linear operators (see later discussion).

Cayley, in the mid-19th century, first emphasized this generality, and he

introduced the concept of an abstract group, Gn which is a collection of n

distinct elements (...gi...) for which a law of composition is given.  If n is finite,

the group is said to be a group of order n.  The collection of elements must

obey the four rules:

1.  If gi, gj ∈ G then gn = gj•gi ∈ G ∀ gi, gj ∈ G (closure)

2.  gk(gjgi) = (gkgj)gi [leaving out the composition symbol•] (associativity)

3.  ∃ e ∈ G such that gie = egi = gi ∀ gi ∈ G (an identity exists)

4.  If gi ∈ G then ∃ gi
-1 ∈ G such that gi

-1gi = gigi
-1 = e (an inverse exists).

For finite groups, the group structure is given by listing all

compositions of pairs of elements in a group table, as follows:

             e  .  gi    gj   .  ←(1st symbol, or operation, in pair)
         e      .  .      .   .
         .       .  .      .   .
        gi .    . gigi  g igj  .
        gj      . gjgi  g jgj  .
        gk     . gkgi  gkgj  .
        .
        .
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If gjgi = gigj ∀ gi, g j ∈ G, then G is said to be a commutative or abelian

group.  The group table of an abelian group is symmetric under reflection in

the diagonal.

A group of elements that has the same structure as an abstract group is

a realization of the group.

5.3 The dihedral group, D3

The set of operations that leaves an equilateral triangle invariant under

rotations in the plane about its center, and under reflections in the three

planes through the vertices, perpendicular to the opposite sides, forms a

group of six elements.  A study of the structure of this group (called the

dihedral group, D3) illustrates the typical group-theoretical approach.

The geometric operations that leave the triangle invariant are:

Rotations about the z-axis (anticlockwise rotations are positive)

Rz(0)     (123) → (123) = e, the identity

Rz(2π/3)(123) → (312)  = a

Rz(4π/3)(123) → (231)  = a2

and reflections in the planes I, II, and III:

         RI (123) → (123) = b

        RII (123) → (321) = c

       RIII (123) → (213) = d

This set of operators is D3 = {e, a, a2, b, c, d}.

Positive rotations are in an anticlockwise sense and the inverse rotations are in

a clockwise sense., so that the inverse of e, a, a2 are
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e-1 = e, a-1 = a2, and (a2)-1 = a.

The inverses of the reflection operators are the operators themselves:

b-1 = b, c -1 = c, and d-1 = d.

We therefore see that the set D3 forms a group.  The group

multiplication table is:

e  a  a2  b  c  d  
    e    e  a  a2  b  c  d  
    a    a  a2  e  d  b  c
    a2    a2  e  a  c  d  b
    b    b  c  d  e  a  a2

    c    c  d  b  a2  e  a
    d    d  b  c  a  a2  e

In reading the table, we follow the rule that the first operation is written on

the right: for example, ca2 = b.  A feature of the group D3 is that it can be

subdivided into sets of either rotations involving {e, a, a2} or reflections

involving {b, c, d}.  The set {e, a, a2} forms a group called the cyclic group

of order three, C3.  A group is cyclic if all the elements of the group are

powers of a single element.  The cyclic group of order n, Cn, is

 Cn = {e, a, a2, a3, .....,an-1},

where n is the smallest integer such that an = e, the identity.  Since

       akan-k = an = e,

an inverse an-k exists.  All cyclic groups are abelian.

The group D3 can be broken down into a part that is a group C3, and a

part that is the product of one of the remaining elements and the elements of

C3.  For example, we can write
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D3 = C3 + bC3 , b ∉ C3

              = {e, a, a2} + {b, ba, ba2}

     = {e, a, a2} + {b, c, d}

     = cC3 = dC3.

This decomposition is a special case of an important theorem known as

Lagrange’s theorem.  (Lagrange had considered permutations of roots of

equations before Cauchy and Galois).

5.4  Lagrange’s theorem

The order m of a subgroup Hm of a finite group Gn of order n is a

factor (an integral divisor) of n.

Let

Gn = {g1=e, g2, g3, ...gn} be a group of order n, and let

Hm = {h1=e, h2, h3, ...hm} be a subgroup of Gn of order m.

If we take any element gk of Gn which is not in Hm, we can form the set of

elements

{gkh1, gkh2, gkh3, ...gkhm} ≡ gkHm.

This is called the left coset of Hm with respect to gk.  We note the important

facts that all the elements of gkhj, j=1 to m are distinct, and that none of the

elements gkhj belongs to Hm.

Every element gk that belongs to Gn but does not belong to Hm

belongs to some coset gkHm  so that Gn forms the union of Hm and a number
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of distinct (non-overlapping) cosets.  (There are (n − m) such distinct cosets).

Each coset has m different elements and therefore the order n of Gn is

divisible by m, hence n = Km, where the integer K is called the index of the

subgroup Hm under the group Gn. We therefore write

Gn = g1Hm + gj2Hm + gk3Hm + ....gνKHm

where

gj2 ∈ Gn ∉ Hm,

gk3 ∈ Gn ∉ Hm, gj2Hm

.

gnK ∈ Gn ∉ Hm, gj2Hm, gk3Hm, ...gn-1, K-1Hm.

The subscripts 2, 3, 4, ..K are the indices of the group.

As an example, consider the permutations of three objects 1, 2, 3 ( the

group S3) and let Hm = C3 = {123, 312, 231}, the cyclic group of order

three.  The elements of S3 that are not in H3 are {132, 213, 321}.  Choosing

gk = 132, we obtain

     gkH3 = {132, 321, 213},

and therefore

         S3 = C3 + gk2C3 ,K = 2.

This is the result obtained in the decomposition of the group D3 , if we make

the substitutions e = 123, a = 312, a2 = 231, b = 132, c = 321, and d = 213.
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The groups D3 and S3 are said to be isomorphic.  Isomorphic groups have

the same group multiplication table.  Isomorphism is a special case of

homomorphism that involves a many-to-one correspondence.

5.5 Conjugate classes and invariant subgroups

If there exists an element v ∈ Gn such that two elements a, b ∈ Gn are

related by vav-1 = b, then b is said to be conjugate to a.  A finite group can

be separated into sets that are conjugate to each other.

The class of Gn is defined as the set of conjugates of an element a ∈

Gn.  The element itself belongs to this set.  If a is conjugate to b, the class

conjugate to a and the class conjugate to b are the same.  If a is not conjugate

to b, these classes have no common elements.  Gn can be decomposed into

classes because each element of Gn belongs to a class.

An element of Gn that commutes with all elements of Gn forms a class

by itself.  

The elements of an abelian group are such that

        bab-1 = a for all a, b ∈ Gn,

so that

           ba = ab.

If Hm is a subgroup of Gn, we can form the set

{aea-1, ah2a
-1, ....ahma-1} = aHma-1 where a ∈ Gn .
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Now, aHma-1 is another subgroup of Hm in Gn.  Different subgroups may be

found by choosing different elements a of Gn.  If, for all values of a ∈ Gn

      aHma-1 = Hm

(all conjugate subgroups of Hm in Gn are identical to Hm),

then Hm is said to be an invariant subgroup in Gn.

Alternatively, Hm is an invariant in Gn if the left- and right-cosets

formed with any a ∈ Gn are equal, i. e. ahi = hka.

An invariant subgroup Hm of Gn commutes with all elements of Gn.

Furthermore, if hi ∈ Hm then all elements ahia
-1 ∈ Hm so that Hm is an

invariant subgroup of Gn if it contains elements of Gn in complete classes.

Every group Gn contains two trivial invariant subgroups, Hm = Gn and

Hm = e.  A group with no proper (non-trivail) invariant subgroups is said to

be simple (atomic).  If none of the proper invariant subgroups of a group is

abelian, the group is said to be semisimple.

An invariant subgroup Hm and its cosets form a group under

multiplication called the factor group (written Gn/Hm) of Hm in Gn.

These formal aspects of Group Theory can be illustrated by considering

the following example:
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The group D3 = {e, a, a2, b, c, d} ~ S3 = {123, 312, 231, 132, 321, 213}.  

C3 is a subgroup of S3: C3 = H3 = {e, a, a2} = {123, 312, 231}.

Now,

   bH3 = {132, 321, 213} = H3b

   cH3 = {321, 213, 132} = H3c

and

    dH3 = {213,132, 321} = H3d.

Since H3 is a proper invariant subgroup of S3, we see that S3 is not simple.

H3 is abelian therefore S3 is not semisimple.

The decomposition of S3 is

  S3 = H3 + bH3 = H3 + H3b.

and, in this case we have

         H3b = H3c = H3d.

(Since the index of H3 is 2, H3 must be invariant).

The conjugate classes are

   e = e

        eae-1 = ea = a

        aaa-1 = ae = a

  a2a(a2)-1   = a2a2 = a

       bab-1 = bab = a2

        cac-1 = cac = a2

       dad-1 = dad = a2
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The class conjugate to a is therefore {a, a2}.

The class conjugate to b is found to be {b, c, d}.  The group S3 can be

decomposed by classes:

    S3 = {e} + {a, a2} + {b, c, d}.

S3 contains three conjugate classes.

  If we now consider Hm = {e, b} an abelian subgroup, we find

 aHm = {a,d}, Hma = {a.c},

a2Hm = {a2,c}, Hma2 = {a2, d}, etc.

All left and right cosets are not equal: Hm = {e, b} is therefore not an

invariant subgroup of S3. We can therefore write

   S3 = {e, b} + {a, d} + {a2, c}

         = Hm    +  aHm    + a2Hm.

Applying Lagrange’s theorem to S3 gives the orders of the possible

subgroups: they are

order 1: {e}

order 2: {e, d}; {e, c}: {e, d}

order 3: {e, a, a2} (abelian and invariant)

order 6: S3.

5.6 Permutations

A permutation of the set {1, 2, 3, ....,n} of n distinct elements is an

ordered arrangement of the n elements.  If the order is changed then the



48

permutation is changed.  The number of permutations of n distinct elements is

n!

We begin with a familiar example: the permutations of three distinct

objects labelled 1, 2, 3.  There are six possible arrangements; they are

123, 312, 231, 132, 321, 213.

These arrangements can be written conveniently in matrix form:

                   1 2 3             1 2 3               1 2 3     
π1 =              , π2 =              , π3 =                 ,

                   1 2 3             3 1 2               2 3 1     

                   1 2 3             1 2 3               1 2 3     
π4 =              , π5 =              , π6  =               .

                   1 3 2             3 2 1               2 1 3     

The product of two permutations is the result of performing one arrangement

after another.  We then find

π2π3 = π1

and

π3π2 = π1

whereas

π4π5 = π3

and

π5π4 = π2.

The permutations π1, π2, π3 commute in pairs (they correspond to the

rotations of the dihedral group) whereas the permutations do not commute

(they correspond to the reflections).

A general product of permutations can be written
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  s1  s2 .  .  .sn    1  2  .  .  n          1  2   .  .  n
     =                     .

  t1  t2 .  .  .tn    s1  s2 .  .  sn          t1  t2  .  .  tn   

The permutations are found to have the following properties:

1.  The product of two permutations of the set {1, 2, 3, ...} is itself a

permutation of the set.  (Closure)

2.  The product obeys associativity:

(πkπj)πi = πk(πjπi), (not generally commutative).

3.  An identity permutation exists.

4.  An inverse permutation exists:

                    s1  s2  .  .  .  sn                  
π-1 =                          

                    1   2  .  .  .  n           

such that ππ-1 = π-1π = identity permutation.

The set of permutations therefore forms a group

5.7 Cayley’s theorem:

Every finite group is isomorphic to a certain permutation group.

Let Gn ={g1, g2, g3,  .  .  .gn} be a finite group of order n.  We choose any

element gi in Gn, and we form the products that belong to Gn:

gig1, gig2, gig3,  .  .  . gign.

These products are the n-elements of Gn rearranged.  The permutation πi,

associated with gi is therefore

                          g1        g2        .         .         gn  
              πi =                                                     .
                          gig1     gig2       .        .        gign  

If the permutation πj associated with gj is
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                          g1        g2         .         .         gn    
              πj =                                                        ,
                         gjg1      gjg2        .         .       gjgn   

where gi ≠ gj, then

                          g1         g2         .        .        gn       
            πjπi  =                                                            .  
                        (gjgi)gi  (gjgi)g2    .        .      (gjgi)gn   

This is the permutation that corresponds to the element gjgi of Gn.

There is a direct correspondence between the elements of Gn and the n-

permutations {π1, π2, .  .  .πn}.  The group of permutations is a subgroup of

the full symmetric group of order n! that contains all the permutations of the

elements g1, g2, .  .  gn.

Cayley’s theorem is important not only in the theory of finite groups

but also in those quantum systems in which the indistinguishability of the

fundamental particles means that certain quantities must be invariant under

the exchange or permutation of the particles.

6

LIE’S DIFFERENTIAL EQUATION, INFINITESIMAL ROTATIONS

AND ANGULAR MOMENTUM OPERATORS

Although the field of continuous transformation groups (Lie groups)

has its origin in the theory of differential equations, we shall introduce the

subject using geometrical ideas.
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6.1 Coordinate and vector rotations

A 3-vector v = [vx, vy, vz] transforms into v´ = [vx´, vy´, vz´] under a

general coordinate rotation R about the origin of an orthogonal coordinate

system as follows:

           v´ = R v,

where

                     i.i´    j.i´    k.i´     
           R =   i.j´    j.j´    k.j´    

                                                i.k´   j.k´   k.k´    

                                                 cosθii´   .       .            
                 =    cosθij´   .       .            
                                                 cosθik´  .   cosθkk´      

where i, j, k, i´, j´, k´ are orthogonal unit vectors, along the axes, before and

after the transformation, and the cosθii´’s are direction cosines.

The simplest case involves rotations in the x-y plane:

             vx´      =      cosθii´   cosθji  vx

              vy´              cosθij´   cosθjj´      vy        

     =      cosφ     sinφ      vx    = Rc(φ)v
                              −sinφ     cosφ      vy   

where Rc(φ) is the coordinate rotation operator.  If the vector is rotated in a

fixed coordinate system, we have φ → −φ so that
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                  v´ = Rv(φ)v,
where

                 Rv(φ)    =   cosφ  −sinφ  .
                                   sinφ    cosφ  

6.2  Lie’s differential equation

The main features of Lie’s Theory of Continuous Transformation

Groups can best be introduced by discussing the properties of the rotation

operator Rv(φ) when the angle of rotation is an infinitesimal.  In general,

Rv(φ) transforms a point P[x, y] in the plane into a “new” point P´[x´, y´]:

P´ = Rv(φ)P.  Let the angle of rotation be sufficiently small for us to put

cos(φ) ≅ 1 and sin(φ) ≅ δφ, in which case, we have

 Rv(δφ) =       1   −δφ   
                    δφ     1    

and

 x´ = x.1 − yδφ = x − yδφ     

 y´ = xδφ + y.1 = xδφ + y   

Let the corresponding changes x → x´ and y → y´ be written

x´ = x + δx and y´ = y +δy

so that

δx = −yδφ and δy = xδφ.

We note that

  Rv(δφ) =      1   0      +      0  −1  δφ
            0   1              1    0    
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    = I  + iδφ
where

  i =  0   −1   = Rv(π/2).
         1     0   

Lie introduced another important way to interpret the operator           

i = Rv(π/2), that involves the derivative of Rv(φ) evaluated at the identity

value of the parameter, φ = 0:

dRv(φ)/dφ    =   −sinφ  −cosφ       =    0  −1   = i
       φ =0        cosφ  −sinφ               1    0    

               φ = 0                  

so that

                           Rv(δφ) = I + dRv(φ)/dφ .δφ,  
          φ = 0    

a quantity that differs from the identity I by a term that involves the

infinitesimal, δφ: this is an infinitesimal transformation.

Lie was concerned with Differential Equations and not Geometry.  He

was therefore motivated to discover the key equation

dRv(φ)/dφ  =      0  −1    cosφ  −sinφ     
      1    0       sinφ    cosφ     

       = iRv(φ) .
This is Lie’s differential equation.

Integrating between φ = 0 and φ = φ, we obtain

Rv(φ)                           φ

    ∫ dRv(φ)/Rv(φ)  = i ∫ dφ
    I                            0

so that
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            ln(Rv(φ)/I) = iφ,
or

          Rv(φ) = Ieiφ , the solution of Lie’s equation.

Previously, we obtained

         Rv(φ) = Icosφ + isinφ.

We have, therefore
             Ieiφ = Icosφ + isinφ .     

This is an independent proof of the famous Cotes-Euler equation.

We introduce an operator of the form

     O = g(x, y, ∂/∂x, ∂/∂y),

and ask the question: does

    δx = Of(x, y; δφ) ?

Lie answered the question in the affirmative; he found

        δx = O(xδφ) = (x∂/∂y − y∂/∂x)xδφ = −yδφ

and

        δy = O(yδφ) = (x∂/∂y − y∂/∂x)y∂φ =  xδφ .

Putting x = x1 and y = x2, we obtain

   δxi = Xxiδφ , i = 1, 2

where

     X = O = (x1∂/∂x2 − x2∂/∂x1), the “generator of rotations” in the plane.

6.3 Exponentiation of infinitesimal rotations

We have seen that

   Rv(φ) = eiφ,
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and therefore

     Rv(δφ) = I + iδφ, for an infinitesimal rotation, δφ

Performing two infinitesimal rotations in succession, we have

   Rv
2(δφ) = (I + iδφ)2

      =  I + 2iδφ to first order,

      = Rv(2δφ).

Applying Rv(δφ) n-times gives

            Rv
n(δφ) = Rv(nδφ) = einδφ = eiφ

      = Rv(φ) (as n → ∞ and δφ → 0, the

            product nδφ → φ).

This result agrees, as it should, with the exact solution of Lie’s differential

equation.  

A finite rotation can be built up by exponentiation of infinitesimal

rotations, each one being close to the identity.  In general, this approach has

the advantage that the infinitesimal form of a transformation can often be

found in a straightforward way, whereas the finite form is often intractable.

6.4 Infinitesimal rotations and angular momentum operators

In Classical Mechanics, the angular momentum of a mass m, moving in

the plane about the origin of a cartesian reference frame with a momentum p

is
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          Lz = r × p = rpsinφnz

where nz is a unit vector normal to the plane, and φ is the angle between r

and p.  In component form, we have

         Lz
cl = xpy − ypx, where px and py are the cartesian

components of p.

The transition between Classical and Quantum Mechanics is made by

replacing

          px by −i(h/2π)∂/∂x (a differential operator)

and           py by −i(h/2π)∂/∂y (a differential operator),where h

is Planck’s constant.

We can therefore write the quantum operator as

         Lz
Q = −i(h/2π)(x∂/∂y − y∂/∂x) = −i(h/2π)X

and therefore

  X = iLz
Q/(h/2π),

and

    δxi =  Xxi δφ = (2πiLz
Q/h)xi δφ, i = 1,2.

Let an arbitrary, continuous, differentiable function f(x, y) be

transformed under the infinitesimal changes

  x´ = x − yδφ

  y´ = y + xδφ .

Using Taylor’s theorem, we can write

  f(x´, y´) = f(x + δx, y + δy)
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      = f(x − yδφ, y + xδφ)

      = f(x, y) + ((∂f/∂x)δx + ((∂f/∂y)δy)

                                          = f(x, y) + δφ(−y(∂/∂x) + x(∂/∂y))f(x, y)

      = I + 2πiδφLz/h)f(x, y)

      = e2πiδφLz/h f(x, y)

      = Rv(2πLzδφ/h) f(x, y).

The invatriance of length under rotations follows at once from this result:

  If f(x, y) = x2 + y2  then

    ∂f/∂x = 2x and ∂f/∂y = 2y, and therefore

    f(x´, y´) = f(x, y) + 2xδx + 2yδy

        = f(x, y) − 2x(yδφ) + 2y(xδφ)

        = f(x, y) = x2 + y2 = invariant.

This is the only form that leads to the invariance of length under rotations.
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6.5 3-dimensional rotations

Consider three successive counterclockwise rotations about the x, y´,

and z´´ axes through angles µ, θ, and φ, respectively:

                      z    
                                                                  z′                  y′  
                                               µ about x
                               y                                                    y

                                        x                                                   x, x′  

               z′                 y′                                       z′′       y′, y′′
                                               θ about y´

                                        x′                                            x′′   x′

                     z′′                                                 z′′′
                                     y′′                                            y′′′  
                                                φ about z´´

                                      x′′                                              x′′      x′′′  
The total transformation is

     Rc(µ, θ, φ) = Rc(φ)Rc(θ)Rc(µ)

  cosφcosθ      cosφsinθsinµ + sinφcosµ     −cosφsinθcosµ + sinφsinµ      
    =   −sinφcosθ   −sinφsinθsinµ + cosφcosµ        sinφsinθcosµ + sinφsinµ     

     sinθ              −cosθsinµ                                cosθcosµ                  

For infinitesimal rotations, the total rotation matrix is, to 1st-order in the δ’s:

                                                 1              δφ             −δθ    
                 Rc(δµ, δθ, δφ) =    −δφ              1                δµ   .
                                                δθ            −δµ               1     

The infinitesimal form can be written as follows:
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                                     1  δφ  0       1   0 −δθ     1   0    0     
    Rc(δµ, δθ, δφ) =     −δφ  1   0     0   1   0     0   1  δµ  
                                     0   0   1      δθ   0   1      0 −δµ  1   

                           =    I + Y3δφ  I + Y2δθ  I + Y1δµ       

where

                           0  0  0                       0  0 −1                      0  1  0   
              Y1 =      0  0  1    ,    Y2 =     0  0  0    ,     Y3 =    −1  0  0    .
                           0 −1  0                      1   0  0                       0  0  0  

To 1st-order in the δ’s, we have

                   Rc(δµ, δθ, δφ)  = I  +  Y1δµ  +  Y2δθ  +  Y3δφ .

6.6  Algebra of the angular momentum operators

The algebraic properties of the Y’s are important.  For example, we find

 that their commutators are:

                             0   0   0   0   0 −1          0   0 −1   0   0  0   
[Y1, Y2]  =     0   0   1   0   0   0   −     0   0   0   0   0  1   

                             0 −1   0   1   0   0          1   0   0   0 −1  0    

                       =  −Y3  ,

[Y1, Y3]   =   Y2  ,

and

[Y2, Y3]   =  −Y1 .

These relations define the algebra of the Y’s.  In general, we have

  [Yj, Yk]  =  ± Yl = εjkl Yl ,

where εjkl is the anti-symmetric Levi-Civita symbol.  It is equal to +1 if jkl is

an even permutation, −1 if jkl is an odd permutation, and it is equal to zero if

two indices are the same.
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Motivated by the relationship between Lz and X in 2-dimensions, we

introduce the operators

   Jk = −i(2π/h)Yk , k = 1, 2, 3.

Their commutators are obtained from those of the Y’s, for example

   [Y1, Y2] = −Y3 →  [2πiJ1/h, 2πiJ2/h] = −2πiJ3/h

or

    −[J1, J2](2π/h)2 = −2πiJ3/h

and therefore

               [J1, J2] = ihJ3/2π .

These operators obey the general commutation relation

               [Jj, Jk] = ihεjkl Jl /2π .

The angular momentum operators form a “Lie Algebra”.

The basic algebraic properties of the angular momentum operators in

Quantum Mechanics stem directly from this relation.

Another approach involves the use of the differential operators in 3-

dimensions.  A point P[x, y, z] transforms under an infinitesimal rotation of

the coordinates as follows

               P´[x´, y´, z´]  =  Rc(δµ, δθ, δφ]P[x, y, z]

Substituting the infinitesimal form of Rc in this equation gives

          δx = x´ − x =           yδφ − zδθ

          δy = y´ − y =  −xδφ         + zδµ

           δz = z´ − z =   xδθ − yδµ .
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Introducing the classical angular momentum operators: Li
cl, we find that

these small changes can be written
            3

          δxi  =  ∑ δαk Xkxi  
           k = 1

For example, if i = 1

           δx1 = δx  =   δµ(z∂/∂y  −  y∂/∂z)x

                  + δθ(-z∂/∂x  +  x∂/∂z)x

                  + δφ(y∂/∂x  −  x∂/∂y)x   =  −zδθ  +  yδφ .

Extending  Lie’s method to three dimensions, the infinitesimal form

of the rotation operator is readily shown to be

        3
Rc(δµ, δθ, δφ)  =  I  +  ∑ (∂Rc/∂αi)| ⋅ δαi . 

                                 i =  1                            All αi’s = 0    
7

LIE ’S CO NTINU OUS T RANSF ORMAT ION G ROUPS 

In the  pre vious  cha pter,  we dis cusse d the  pro perti es of inf inite simal 

rot ation s in 2- and  3-d imens ions,  and  we fou nd tha t the y are  rel ated

dir ectly  to the  ang ular  mom entum  ope rator s of Qua ntum Mec hanic s.

Imp ortan t  alg ebrai c pro perti es of the  mat rix rep resen tatio ns of the 

ope rator s als o wer e int roduc ed.  In thi s cha pter,  we sha ll con sider  the 

sub ject in gen eral ter ms.

Let  xi, i = 1 to n be a set  of n var iable s.  The y may  be con sider ed to

be the  coo rdina tes of a poi nt in an n-d imens ional  vec tor spa ce, Vn.  A set 

of equ ation s inv olvin g the  xi’s is obt ained  by the  tra nsfor matio ns
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 xi´  =  f i(x1, x2, ... xn: a1, a2, ... .ar), i = 1 to n

in whi ch the  set  a1, a2, ...a r con tains  r-i ndepe ndent  par amete rs.  The  set  Ta,

of tra nsfor matio ns map s x → x´.   We sha ll wri te

          x´  =  f(x ; a) or x´  =  Tax

for  the  set  of fun ction s.

It is ass umed tha t the  fun ction s fi are  dif feren tiabl e wit h res pect to

the  x’s  and  the  a’s  to any  req uired  ord er.  The se fun ction s nec essar ily

dep end on the  ess entia l par amete rs, a.  Thi s mea ns tha t no two 

tra nsfor matio ns wit h dif feren t num bers of par amete rs are  the  sam e.  r is

the  sma llest  num ber req uired  to cha racte rize the  tra nsfor matio n,

com plete ly.

The  set  of fun ction s fi for ms a fin ite con tinuo us gro up if:

1.  The  res ult of two  suc cessi ve tra nsfor matio ns x → x´ → x´´  is equ ivale nt

to a sin gle tra nsfor matio n x → x´´ :

    x´  =  f(x ́ ; b)  =  f(f (x; a);  b)

       =  f(x ; c)

       =  f(x ; χ(a;  b)) 

whe re c is the  set  of par amete rs

   cλ  =  χλ (a;  b) ,  λ = 1 to r,

and 

2.  To eve ry tra nsfor matio n the re cor respo nds a uni que inv erse tha t

bel ongs to the  set :
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∃ a suc h tha t x = f(x ́ ; a) = f(x ́; a)

We hav e

   TaTa
-1  =  Ta

-1Ta  =  I, the  ide ntity .

We sha ll see  tha t 1) is a hig hly res trict ive req uirem ent.

The  tra nsfor matio n x = f(x ; a0) is the  ide ntity .  Wit hout los s of

gen erali ty, we can  tak e a0 = 0.  The  ess entia l poi nt of Lie ’s the ory of

con tinuo us tra nsfor matio n gro ups is to con sider  tha t par t of the  gro up tha t

is clo se to the  ide ntity , and  not  to con sider  the  gro up as a who le.

Suc cessi ve inf inite simal  cha nges can  be use d to bui ld up the  fin ite cha nge.

7.1  One -para meter  gro ups

Con sider  the  tra nsfor matio n x → x´ und er a fin ite cha nge in a sin gle

par amete r a, and  the n a cha nge x´ + dx´ .  The re are  two  pat hs fro m x  →

x  ́+ dx´ ; the y are  as sho wn:

x´
an “in finit esima l”

      δa
  a, a fin ite par amete r cha nge

x  ́+ dx´ 
    a + da

   a “di ffere ntial ”
         x (a = 0)

We hav e

  x´ + dx´  = f(x ; a + da) 

     = f(f (x; a);  δa) = f(x ́; δa)

The  1st -orde r Tay lor exp ansio n is
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dx´  = ∂f( x´; a)/ ∂a  δa ≡ u(x ́ ) δa
                                                               a = 0  
The  Lie  gro up con ditio ns the n dem and

     a + da = χ(a;  δa). 

But 

     χ(a;  0) = a,  (b = 0)

the refor e

     a + da = a + ∂χ(a;  b)/ ∂b  δa
                       b = 0

so tha t
  da = ∂χ(a;  b)/ ∂b  δa

                                                               b = 0

or

  δa = A(a )da.

The refor e

 dx´  = u(x ́ )A(a )da,

lea ding to

 dx´ /u(x´ )  =  A(a )da

so tha t
x´                    a

       ∫ dx´ /u(x´ )  = ∫A(a )da  ≡ s, (s = 0 → the  ide ntity ).
       x                     0

We the refor e obt ain

       U(x ́ ) − U(x ) = s.

A tra nsfor matio n of coo rdina tes (ne w var iable s) the refor e tra nsfer s all 

ele ments  of the  gro up by the  sam e tra nsfor matio n: a one -para meter  gro up

is equ ivale nt to a gro up of tra nslat ions. 
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Two  con tinuo us tra nsfor matio n gro ups are  sai d to be sim ilar whe n

the y can  be obt ained  fro m one  ano ther by a cha nge of var iable . For 

exa mple,  con sider  the  gro up def ined by

               x1´        a   0     x1
               x2´   =   0   a2    x2  

The  ide ntity  cop rresp onds to a = 1.  The  inf inite simal  tra nsfor matio n is

the refor e

               x1´       (1 + δa)         0        x1

               x2´   =       0       (1 + δa)2    x2  .   

To 1st -orde r in δa we hav e

       x1´  =  x1 + x1δa

and 

       x2´  =  x2 + 2x2δa

or

       δx1  =  x1δa

and 

       δx2  =  2x2δa.

In the  lim it, the se equ ation s giv e

    dx1/x1  =  dx2/2x 2  =  da. 

The se are  the  dif feren tial equ ation s tha t cor respo nd to the  inf inite simal 

equ ation s abo ve.

Int egrat ing, we hav e
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  x1´                 a                 x2´                   a

∫ dx1/x1   =  ∫ da  and      ∫ dx2/2x 2   =    da ,
 x1               0                 x2                   0

so tha t

     lnx 1´  −  lnx 1  =  a  =  ln( x1´/x 1)

and 

         ln( x2´/x 2)  =  2a  =  2ln (x1´/x 1)

or

 U´  =  (x2´/x 1´
2)  =  U  =  (x2/x1

2) .

Put ting V  =  lnx 1, we obt ain

 V´  =  V  +  a   and  U´ =  U, the  tra nslat ion gro up.

7.2   Det ermin ation  of the  fin ite equ ation s fro m the  inf inite sim al

for ms

Let  the  fin ite equ ation s of a one -para meter  gro up G(1)  be

         x1´  =  φ(x1, x2 ; a)

and 

         x2´  =  ψ(x1, x2 ; a), 

and  let  the  ide ntity  cor respo nd to a = 0.

We con sider  the  tra nsfor matio n of f(x 1, x2) to f(x 1 ,́ x2´).   We exp and  

f(x 1 ,́ x2´) in a Mac lauri n ser ies in the  par amete r a (at  def inite  val ues of x1

and  x2):

     f(x 1 ,́ x2´)  =  f(0 )  +  f´( 0)a  +  f´´ (0)a2/2!   +  ... 

whe re
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    f(0 )  =  f(x 1 ,́ x2´)|  a=0   =  f(x 1, x2),

and 

   f´( 0)  =  (df (x1 ,́ x2´)/ da| a=0 

           ={( ∂f/∂x 1´)( dx1´/d a)  +  (∂f /∂x2´)( dx2´/d a)}| a=0 

           ={( ∂f/∂x 1´)u (x1 ,́ x2´)  +  (∂f /∂x2´)v (x1 ,́ x2´)} |a=0 

the refor e

            f´( 0)  = {(u (∂/∂x 1)  +  v(∂ /∂x2))f }| a=0 

                     =  Xf(x 1, x2).
Con tinui ng in thi s way , we hav e

f´´ (0)  = {d2f(x 1 ,́ x2´)/ da2}|a=0   =  X2f(x 1, x2), etc ....

The  fun ction  f(x 1 ,́ x2´) can  be exp anded  in the  ser ies

              f(x 1 ,́ x2´)  =  f(0 )  +  af´ (0)  +  (a2/2! )f´´( 0)  + ... 

                     = f(x 1, x2)  +  aXf  +  (a2/2! )X2f  +  ... 

Xnf is the  sym bol for  ope ratin g n-t imes in suc cessi on of f wit h X.

The  fin ite equ ation s of the  gro up are  the refor e

               x1´  =  x1  +  aXx1  + (a2/2! )X2x1  +  ... 

and 
               x2´  =  x2  +  aXx2  + (a2/2! )X2x2  +   =  ... 

If x1  and  x2 are  def inite  val ues to whi ch x1´an d x2  ́ red uce for  the  ide ntity 

a=0 , the n the se equ ation s are  the  ser ies sol ution s of the  dif feren tial

equ ation s

        dx1´/u (x1 ,́ x2´)  =  dx2´/v (x1 ,́ x2´)  =  da. 

The  gro up is ref erred  to as the  gro up Xf.

For  exa mple,  let 
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                 Xf = (x1∂/∂ x1  +  x2∂/∂ x2)f

the n

               x1´  =  x1  +  aXx1  + (a2/2! )X2f ... 

                      = x1  +  a(x 1∂/∂ x1  + x2∂/∂ x2)x1  + ... 

                      = x1  +ax 1  +  (a2/2! )(x1∂/∂ x1  +  x2∂/∂ x2)x1  +

                      = x1  +  ax1  +  (a2/2! )x1  +  ... 

                      =x1(1  +  a  +  a2/2!   +  ... )

                      = x1e
a.

Als o, we fin d

                         x2´  =  x2e
a.

Put ting b = ea, we hav e

               x1´  =  bx1, and  x2´  = bx2.

The  fin ite gro up is the  gro up of mag nific ation s.

If X = (x∂ /∂y  − y∂/ ∂x) we fin d, for  exa mple,  tha t the  fin ite gro up is the 

gro up of 2-d imens ional  rot ation s.

7.3   Inv arian t fun ction s of a gro up

Let 

         Xf = (u∂ /∂x1  +  v∂/ ∂x2)f def ine a one -para meter 

gro up, and  let  a=0  giv e the  ide ntity .  A fun ction  F(x 1, x2) is ter med an

inv arian t und er the  tra nsfor matio n gro up G(1)  if

      F(x 1 ,́ x2´)  =  F(x 1, x2)

for  all  val ues of the  par amete r, a.
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The  func tion F(x 1 ,́ x2´) can  be exp anded  as a ser ies in a:

F(x 1 ,́ x2´) = F(x 1, x2)  +  aXF  +  (a2/2! )X(XF)  +  ... 

If

        F(x 1 ,́ x2´)  =  F(x 1, x2)  =  inv arian t for  all  val ues of a,

it is nec essar y for 

XF  =  0,

and  thi s mea ns tha t

{u( x1, x2)∂/ ∂x1  +  v(x 1, x2)∂/ ∂x2}F  =  0.

Con seque ntly, 

         F(x 1, x2)  =  con stant 

is a sol ution  of

    dx1/u( x1, x2)  =  dx2/v( x1, x2) .

Thi s equ ation  has  one  sol ution  tha t dep ends on one  arb itrar y con stant , and 

the refor e G(1)  has  onl y one  bas ic inv arian t, and  all  oth er pos sible  inv arian ts

can  be giv en in ter ms of the  bas ic inv arian t.

For  exa mple,  we now  rec onsid er the  the  inv arian ts of rot ation s:

The  inf inite simal  tra nsfor matio ns are  giv en by

         Xf  =  (x1∂/∂ x2  −  x2∂/∂ x1),

and  the  dif feren tial equ ation  tha t giv es the  inv arian t fun ction  F of the 

gro up is obt ained  by sol ving the  cha racte risti c dif feren tial equ ation s

     dx1/x2  =  dφ, and  dx2/x1  =  −dφ,

so tha t

dx1/x2  +  dx2/x1  =  0.
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The  sol ution  of thi s equ ation  is

         x1
2  +  x2

2  = con stant ,

and  the refor e the  inv arian t fun ction  is

  F(x 1, x2)  =  x1
2  +  x2

2.

All  fun ction s of x1
2  +  x2

2 are  the refor e inv arian ts of the  2-d imens ional 

rot ation  gro up.

Thi s met hod can  be gen erali zed.  A gro up G(1)  in n-v ariab les def ined

by the  equ ation 

xi´ = φ(x1, x2, x3, ... xn; a),  i  =  1 to n,

is equ ivale nt to a uni que inf inite simal  tra nsfor matio n

       Xf  =  u1(x1, x2, x3, ... xn)∂f /∂x1  +  ... un(x1, x2, x3, ... xn)∂f /∂xn .

If a is the  gro up par amete r the n the  inf inite simal  tra nsfor matio n is

       xi´  =  xi  +  ui(x1, x2, ... xn)δa  (i  =  1 to n), 

the n, if E(x 1, x2, ... xn) is a fun ction  tha t can  be dif feren tiate d n-t imes wit h

res pect to its  arg ument s, we hav e

        E(x 1 ,́ x2 ,́ ... xn´)  =  E(x 1, x2, ... xn)  +  aXE  +  (a2/2! )X2E  + .

Let  (x1, x2, ... xn) be the  coo rdina tes of a poi nt in n-s pace and  let  a be a

par amete r, ind epend ent of the  xi’s.   As a var ies, the  poi nt (x1, x2, ... xn) wil l

des cribe  a tra jecto ry, sta rting  fro m the  ini tial poi nt (x1, x2, ... xn).  A

nec essar y and  suf ficie nt cond ition  tha t F(x 1, x2, ... xn) be an inv arian t

fun ction  is tha t XF = 0.  A cur ve F = 0 is a tra jecto ry and  the refor e an

inv arian t cur ve if

   XF(x 1, x2, x3, ... xn)  =  0.
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8

  PROPERTIES OF n-VARIABLE, r-PARAMETER LIE GROUPS

The change of an n-variable function F(x) produced by the

infinitesimal transformations associated with r-essential parameters is:
 n

          dF = ∑ (∂F/∂xi)dxi
i = 1

where
 r

 dxi = ∑ uiλ(x)δaλ , the Lie form.
λ = 1

The parameters are independent of the xi’s therefore we can write
   r        n

  dF =  ∑ δaλ{∑ uiλ(x)(∂/∂xi)F}
  λ = 1       i = 1

   r
       =  ∑ δaλ Xλ F

  λ = 1

where the infinitesimal generators of the group are
                                                n

   Xλ ≡  ∑ uiλ(x)(∂/∂xi) , λ= 1 to r.
  i = 1

The operator
     r

     I  +  ∑ Xλδaλ
    λ = 1

differs infinitesimally from the identity.

The generators Xλ have algebraic properties of basic importance in the

Theory of Lie Groups.  The Xλ’s are differential operators.  The problem is

therefore one of obtaining the algebraic structure of differential operators.

This problem has its origin in the work of Poisson (1807); he

introduced the following ideas:

The two expressions

X1f  =  (u11∂/∂x1  +  u12∂/∂x2)f
and
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X2f  =  (u21∂/∂x1  +  u22∂/∂x2)f

where the coefficients uiλ are functions of the variables x1, x2, and f(x1, x2)

is an arbitrary differentiable function of the two variables, are termed

linear differential operators.

The “product” in the order X2 followed by X1 is defined as

X1X2f  =  (u11∂/∂x1  +  u12∂/∂x2)(u21∂f/∂x1  +  u22∂f/∂x2)

The product in the reverse order is defined as

X2X1f  =  (u21∂/∂x1  +  u22∂/∂x2)(u11∂f/∂x1  +  u12∂f/∂x2).

The difference is

X1X2f  −  X2X1f  =    X1u21∂f/∂x1  +  X1u22∂f/∂x2

  − X2u11∂f/∂x1  −  X2u12∂f/∂x2.

                         =  (X1u21  −  X2u11)∂f/∂x1  +  (X1u22  −  X2u12)∂f/∂x2

       ≡  [X1, X2]f.

This quantity is called the Poisson operator or the commutator of the

operators X1f and X2f.

The method can be generalized to include λ = 1 to r essential parameters

and i = 1 to n variables.  The ath-linear operator is then

 Xa  =  uia∂f/∂xi
   n

       =  ∑ uia∂f/∂xi , ( a sum over repeated indices).
  i = 1

Lie’s differential equations have the form
∂xi/∂aλ  =  uik(x)Akλ(a) , i = 1 to n, λ = 1 to r.

Lie showed that

    (∂ckτσ/∂aρ)uik  =  0
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in which

        ujσ∂uiτ/∂xj  −  u jτ∂uiσ/∂xj  = ckτσ(a)uik(x),

so that the ckτσ’s are constants.  Furthermore, the commutators can be

written

          [Xρ, Xσ]  = ( ckρσujk)∂/∂xj

               = ckρσXk.

The commutators are linear combinations of the Xk’s.  (Recall the earlier

discussion of the angular momentum operators and their commutators).

The ckρσ’s are called the structure constants of the group.  They have the

properties

                      ckρσ  =  −ckσρ ,

    cµρσcνµτ  +  cµστcνµρ  +  cµτρcνµσ  =  0.

Lie made the remarkable discovery that, given these structure constants,

the functions that satisfy

              ∂xi/∂aλ  =  uikAkλ(a) can be found.

(Proofs of all the above important statements, together with proofs of

Lie’s three fundamental theorems, are given in Eisenhart’s

standard work Continuous Groups of Transformations, Dover Publications,

1961).
8.1  The rank of a group

Let A be an operator that is a linear combination of the generators

of a group, Xi:

         A  =  αiXi  (sum over i),
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and let
         X  =  xjXj .

The rank of the group is defined as the minimum number of commuting,

linearly independent operators of the form A.

We therefore require all solutions of

    [A, X] = 0.
For example, consider the orthogonal group, O+(3); here

          A  =  αiXi  i = 1 to 3,
and

          X  =  xjXj  j = 1 to 3
so that

    [A, X]  = αixj[Xi, Xj] i, j = 1 to 3

       = αixjεijkXk .

The elements of the sets of generators are linearly independent, therefore

               αixjεijk  = 0 (sum over i, j,, k = 1, 2, 3)

This equation represents the equations

  −α2   α1  0        x1         0  
   α3   0  −α2     x2  =   0  .
   0   −α3  α2       x3           0  

The determinant of  is zero, therefore a non-trivial solution of the xj’s

exists.  The solution is given by

                 xj  =  αj  (j = 1, 2, 3)

so that

       A  =  X .

O+(3) is a group of rank one.

8.2  The Casimir operator of O+(3)
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The generators of the rotation group O+(3) are the operators. Yk’s,

discussed previously.  They are directly related to the angular momentum

operators, Jk:

    Jk  =  -i(h/2π)Yk (k = 1, 2, 3).

The matrix representations of the Yk’s are

              0   0   0                 0   0 −1                 0   1   0  
Y1 =       0   0   1  ,   Y2  =    0   0   0  ,   Y3  =   −1   0   0 .
             0  −1   0                1   0   0                   0   0   0   

The square of the total angular momentum, J is
         3
J2  =  ∑ Ji

2

         1

     = (h/2π)2 (Y1
2 + Y2

2 + Y3
2)

     = (h/2π)2(-2I).

Schur’s lemma states that an operator that is a constant multiple of I

commutes with all matrix irreps of a group, so that

[Jk, J
2]  =  0  , k = 1,2 ,3.

The operator J2 with this property is called the Casimir operator of the

 group O+(3).

In general, the set of operators {Ci} in which the elements commute

with the elements of the set of irreps of a given group, forms the set of

Casimir operators of the group.  All Casimir operators are constant multiples

of the unit matrix:

 Ci  =   a iI; the constants ai are characteristic of a

particular representation of a group.
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9

MAT RIX R EPRES ENTAT IONS OF GR OUPS

Mat rix rep resen tatio ns of lin ear ope rator s are  imp ortan t in Lin ear

Alg ebra;  we sha ll see  tha t the y are  equ ally imp ortan t in Gro up The ory.

If a gro up of m × m mat rices 

       Dn
(m)   =  {D1

(m) (g1),. ..Dk
(m) (gk), ... Dn

(m) (gn)}

can  be fou nd in whi ch eac h ele ment is ass ociat ed wit h the  cor respo nding 

ele ment gk of a gro up of ord er n

          Gn  =  {g1,.. .gk,.. ..gn},

and  the  mat rices  obe y

          Dj
(m) (gj)Di

(m) (gi)  =  Dji
(m) (gjgi),

and 

  D1
(m) (g1)  =  I, the  ide ntity ,

the n the  mat rices  Dk
(m) (gk) are  sai d to for m an m-d imens ional 

rep resen tatio n of Gn.  If the  ass ociat ion is one -to-o ne we hav e an

iso morph ism and  the  rep resen tatio n is sai d to be fai thful .  

The  sub ject of Gro up Rep resen tatio ns for ms a ver y lar ge bra nch of

Gro up The ory.  The re are  man y sta ndard  wor ks on thi s top ic (se e the 

bib liogr aphy) , eac h one  con taini ng num erous  def initi ons, lem mas and 

the orems .  Her e, a rat her bri ef acc ount is giv en of som e of the  mor e

imp ortan t res ults.   The  rea der sho uld del ve int o the  dee per asp ects of the 

sub ject as the  nee d ari ses.  The  sub ject wil l be int roduc ed by con sider ing
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rep resen tatio ns of the  rot ation  gro ups, and  the ir cor respo nding  cyc lic

gro ups.

9.1   The  3-d imens ional  rep resen tatio n of rot ation s in the  pla ne

The  rot ation  of a vec tor thr ough an ang le φ in the  pla ne is

cha racte rized  by the  2 x 2 mat rix

  cos φ   −sin φ
    Rv(φ)  =                       .

  sin φ     cos φ  

The  gro up of sym metry  tra nsfor matio ns tha t lea ves an equ ilate ral

tri angle  inv arian t und er rot ation s in the  pla ne is of ord er thr ee, and  eac h

ele ment of the  gro up is of dim ensio n two 

Gn ~ R3
(2)   = {R(0) , R(2π /3), R(4π /3)}

      =    1   0  ,  −1/2    −√3/ 2  ,  −1/2    √3/ 2  .
            0   1      √3/ 2   −1/2      −√3/ 2  −1/2  

       ≈  {12 3, 312 , 231 }  =  C3.

The se mat rices  for m a 2-d imens ional  rep resen tatio n of C3 .

A 3-d imens ional  rep resen tatio n of C3 can  be obt ained  as fol lows: 

Con sider  an equ ilate ral tri angle  loc ated in the  pla ne and  let  the 

coo rdina tes of the  thr ee ver tices  P1[x,  y],  P2[x´ , y´] , and  P3[x´ ́ , y´´ ] be

wri tten as a 3-v ector  P13  =  [P1, P2, P3], in nor mal ord er.  We int roduc e   

3 × 3 mat rix ope rator s Di
(3)  tha t cha nge the  ord er of the  ele ments  of P13,

cyc lical ly.  The  ide ntity  is

                 P13  =  D1
(3) P13, whe re D1

(3)   =  dia g(1, 1, 1). 
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The  rea rrang ement 

                 P13 →  P23[P3, P1, P2] is giv en by

        P23  =  D2
(3) P13,

whe re

          0  0  1
       D2

(3)   =  1  0  0  ,
          0  1  0  

and  the  rea rrang ement 

         P13 → P33[P2, P3, P1] is giv en by

         P33  =  D3
(3) P13

whe re

  0  1  0  
       D3

(3)   =   0  0  1  .
  1  0  0  

The  set  of mat rices  {Di
(3) }  =  {D1

(3) , D2
(3) , D3

(3) } is sai d to for m a 3-

dim ensio nal rep resen tatio n of the  ori ginal  2-d imens ional  rep resen tatio n

{R3
(2) }.  The  ele ments  Di

(3)  hav e the  sam e gro up mul tipli catio n tab le as

tha t ass ociat ed wit h C3.

9.2   The  m-d imens ional  rep resen tatio n of sym metry 

tra nsfor matio ns in d-d imens ions

Con sider  the  cas e in whi ch a gro up of ord er n

          Gn  =  {g1, g2, ... gk, ... gn}

is rep resen ted by
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       Rn
(m)  =  {R1

(m) , R2
(m) , ... ..Rn

(m) 

whe re

        Rn
(m)  ~  Gn,

and  Rk
(m)  is an m × m mat rix rep resen tatio n of gk.  Let  P1d be a vec tor in

d-d imens ional  spa ce, wri tten in nor mal ord er:

        P1d  =  [P1, P2, ... Pd],

and  let 

      P1m  =  [P1d, P2d, ... .Pmd]

be an m-v ector , wri tten in nor mal ord er, in whi ch the  com ponen ts are  eac h

d-v ector s.  Int roduc e the  m × m mat rix ope rator  Dk
(m) (gk) suc h tha t

      P1m  =  D1
(m) (g1)P1m

      P2m  =  D2
(m) (g2)P1m

       .

       .

      Pkm  =  Dk
(m) (gk)P1m , k = 1 to m, the  num ber of      

   sym metry  ope ratio ns,

whe re Pkm is the  kth  (cy clic)  per mutat ion of P1m , and  Dk
(m) (gk)

  is cal led

the  “m- dimen siona l rep resen tatio n of gk”.
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Inf inite ly man y rep resen tatio ns of a giv en rep resen tatio n can  be

fou nd, for , if S is a mat rix rep resen tatio n, and  M is any  def inite  mat rix

wit h an inv erse,  we can  for m T(x)   =  MS(x) M-1, ∀ x ∈ G.  Sin ce

T(xy )  =  MS(xy )M-1  =  MS(x) S(y)M-1  =  MS(x) M-1MS(y) M-1

    =  T(x) T(y) ,

T is a rep resen tatio n of G.  The  new  rep resen tatio n sim ply inv olves  a

cha nge of var iable  in the  cor respo nding  sub stitu tions .  Rep resen tatio ns

rel ated in the  man ner of S and  T are  equ ivale nt , and  are  not  reg arded  as

dif feren t rep resen tatio ns.  All  rep resen tatio ns tha t are  equ ivale nt to S are 

equ ivale nt to eac h oth er, and  the y for m an inf inite  cla ss.  Two  equ ivale nt

rep resen tatio ns wil l be wri tten S ~ T.

9.3   Dir ect sum s

If S is a rep resen tatio n of dim ensio n s, and  T is a rep resen tatio n of

dim ensio n t of a gro up G, the  mat rix

                   S(g)      0     
                   P  =                   ,  (g ∈ G)

                    0      T(g)   

of dim ensio n s + t is cal led the  dir ect sum  of the  mat rices  S(g)  and  T(g) ,

wri tten P = S ⊕ T.  The refor e, giv en two  rep resen tat ions (th ey can  be the 

sam e), we can  obt ain a thi rd by add ing the m dir ectly .  Alt ernat ively , let  P

be a rep resen tatio n of dim ensio n s + t; we sup pose tha t, for  all  x ∈ G, the 

mat rix P(x)  is of the  for m

          A(x)      0

           0       B(x) 
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whe re A(x)  and  B(x)  are  s × s and  t × t mat rices , res pecti vely.   (Th e 0’s

are  s × t and  t × s zer o mat rices ).  Def ine the  mat rices  S and  T as fol lows: 

       S(x)   ≡  A(x)  and  T(x)   ≡  B(x) , ∀ x ∈ G.

Sin ce, by the  gro up pro perty , P(xy )  =  P(x) P(y) ,

A(xy )       0              A(x)      0      A(y)      0     
      =

  0         B(xy )           0       B(x)      0       B(y)   

    A(x) A(y)              0
      =     .

        0               B(x) B(y) 

The refor e, S(xy )  =  S(x) S(y)  and  T(xy )  =  T(x) T(y) , so tha t S and  T are 

rep resen tatio ns.  The  rep resen tatio n P is sai d to be dec ompos able, wit h

com ponen ts S and  T.  A rep resen tatio n is ind ecomp osabl e if it can not be

dec ompos ed.

If a com pone nt of a dec ompos able rep resen tatio n is its elf

dec ompos able,  we can  con tinue  in thi s man ner to dec ompos e any 

rep resen tatio n int o a fin ite num ber of ind ecomp osabl e com ponen ts.  (It 

sho uld be not ed tha t the  pro perty  of ind ecomp osabl ity dep ends on the  fie ld

of the  rep resen tatio n; the  rea l fie ld mus t som etime s be ext ended  to the 

com plex fie ld to che ck for  ind ecomp osabi lity) .

A wea ker for m of dec ompos abili ty ari ses whe n we con sider  a

mat rix of the  for m

  A(x)     0
      P(x)   =            

  E(x)     B(x) 
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whe re A(x) , and  B(x)  are  mat rices  of dim ensio ns s × s and  t × t

res pecti vely and  E(x)  is a mat rix tha t dep ends on x, and  0 is the  s × t zer o

mat rix.  The  mat rix P, and  any  equ ivale nt for m, is sai d to be red ucibl e.

An irr educi ble rep resen tatio n is one  tha t can not be red uced.   Eve ry

dec ompos able mat rix is red ucibl e (E(x)  = 0), whe reas a red ucibl e

rep resen tatio n nee d not  be dec ompos able. 

If S and  T are  red ucibl e, we can  con tinue  in thi s way  to obt ain a set 

of irr educi ble com ponen ts.  The  com ponen ts are  det ermin ed uni quely , up

to an equ ivale nce.  The  set  of dis tinct  irr educi ble rep resen tatio ns of a fin ite

gro up is (in  a giv en fie ld) an inv arian t of the  gro up.  The  com ponen ts for m

the  bui lding  blo cks of a rep resen tatio n of a gro up.

In Phy sics,  dec ompos able rep resen tatio ns are  gen erall y ref erred  to as

red ucibl e rep resen tatio ns (re ps).

9.4   Sim ilari ty and  uni tary tra nsfor matio ns and  mat rix

dia gonal izati on

Bef ore dis cussi ng the  que stion  of the  pos sibil ity of red ucing  the 

dim ensio n of a giv en repr esent ation , it wil l be use ful to con sider  som e

imp ortan t res ults in the Theor y of Mat rices .  The  pro ofs of the se sta temen ts

are  giv en in the  sta ndard  wor ks on Mat rix The ory.  (Se e bib liogr aphy) .

If the re exi sts a mat rix Q suc h tha t

Q-1AQ  =  B ,

the n the  mat rices  A and  B are  rel ated by a sim ilari ty tra nsfor matio n.
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If Q is uni tary (QQ†  =  I: Q†  =  (Q*)T , the  her mitia n con jugat e)

the n A and  B are  rel ated by a uni tary tra nsfor matio n.

If A  ́  =  Q-1AQ; B  ́  =  Q-1BQ; C  ́  =  Q-1CQ..t hen any  alg ebrai c

rel ation  amo ng A, B, C... is als o sat isfie d by A ,́ B ,́ C´ ... 

If a sim ilari ty tra nsfor matio n pro duces  a dia gonal  mat rix the n the 

pro cess is cal led dia gonal izati on.

If A and  B can  be dia gonal ized by the  sam e mat rix the n A and  B

com mute.

If V is for med fro m the  eig envec tors of A the n the  sim ilari ty

tra nsfor matio n V-1AV wil l pro duce a dia gonal  mat rix who se ele ments  are 

the  eig enval ues of A.

If A is her mitia n the n V wil l be uni tary and  the refor e an her mitia n

mat rix can  alw ays be dia gonal ized by a uni tary tra nsfo rmati on.  A rea l

sym metri c mat rix can  alw ays be dia gonal ized by an ort hogon al

tra nsfor matio n.

9.5   The  Sch ur-Au erbac h the orem

Thi s the orem sta tes

Eve ry mat rix rep resen tatio n of a fin ite gro up is equ ivale nt to a

uni tary mat rix rep resen tatio n

Let  Gn = {D1, D2, ... .Dn} be a mat rix gro up, and  let  D be the  mat rix

for med by tak ing the  sum  of pai rs of ele ments 
           n

          D  =  ∑ DiDi
†

          i = 1

whe re Di
† is the  her mitia n con jugat e of Di.
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Sin ce Di is non -sing ular,  eac h ter m in the sum  is pos itive  def inite .

The refor e D its elf is pos itive  def inite .  Let  Ld be a dia gonal  mat rix tha t is

equ ivale nt to D, and  let  Ld
1/2  be the  pos itive  def inite  mat rix for med by

rep lacin g the  ele ments  of Ld by the ir pos itive  squ are roo ts.  Let  U be a

uni tary mat rix wit h the  pro perty  tha t

 Ld  =  UDU -1.

 Int roduc e the  mat rix

            S  =  Ld
-1/ 2U,

 the n SDiS
-1 is uni tary.  (Th is pro perty  can  be dem onstr ated by con sider ing

(SDiS
-1)(SDiS

-1)†, and  sho wing tha t it is equ al to the  ide ntity .).  S wil l

tra nsfor m the  ori ginal  mat rix rep resen tatio n Gn int o dia gonal  for m.  Eve ry

uni tary mat rix is dia gonal izabl e, and  the refor e eve ry mat rix in eve ry fin ite

mat rix rep resen tatio n can  be dia gonal ized. 

9.6   Sch ur’s lem mas

A mat rix rep resen tatio n is red ucibl e if eve ry ele ment of the 

rep resen tatio n can  be put  in blo ck-di agona l for m by a sin gle sim ilari ty

tra nsfor matio n.  Inv oking  the  res ult of the  pre vious  sec tion,  we nee d onl y

dis cuss uni tary rep resen tatio ns.  

If Gn  =  {D(ν)(R) } is an irr educi ble rep resen tatio n of dim ensio n ν of

a gro up Gn, and  {D(µ)(R) } is an irr educi ble rep resen tatio n of dim ensio n µ

of the  sam e gro up, Gn, and  if the re exi sts a mat rix A suc h tha t

 D(ν)(R) A  =  AD(µ)(R)   ∀ R ∈ Gn

the n eit her
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i) A = 0

or

ii)  A is a squ are non -sing ular mat rix (so  tha t ν = µ)

Let  the  µ col umns of A be wri tten c1, c2, ... cµ, the n, for  any  mat rices 

D(ν) and  D(µ) we hav e

      D(ν)A  =  (D(ν)c1, D
(ν)c2, ... D

(ν)cn)

an
     µ             µ                µ

      AD(µ)  =  ( ∑ D(µ)
k1ck, ∑ D(µ)

k2ck, ... ∑D(µ)
kµck).

    k = 1           k = 1               k = 1

the refor e    µ
       D(ν)cj  =  ∑ D(µ)

kjck

  k = 1

and  the refor e the  µ c-ve ctors  spa n a spa ce tha t is inv arian t und er the 

irr educi ble set  of ν-di mensi onal mat rices  {D(ν)}.  The  c-ve ctors  are 

the refor e the  nul l-vec tor or the y spa n a ν-di mensi onal vec tor spa ce.  The 

fir st cas e cor respo nds to A = 0, and  the  sec ond to µ ≥ ν and  A ≠ 0.

In the  sec ond cas e, the  her mitia n con jugat es D(ν)
1
†, ... D(ν)

n
† and  D(µ)

1
†,

... D(µ)
n
† als o are  irr educi ble .  Fur therm ore, sin ce D(ν)

i(R) A  =  AD(µ)
i(R) 

D(µ)
i
†A†  =  A†D(ν)

i
† ,

and  the refor e, fol lowin g the  met hod abo ve, we fin d tha t ν ≥ µ.  We mus t

the refor e hav e ν = µ, so tha t A is squ are..   Sin ce the  ν-co lumns  of A spa n

a ν-di mensi onal spa ce, the  mat rix A is nec essar ily non -sing ular.   

As a cor ollar y, a mat rix D tha t com mutes wit h an irr educi ble set  of

mat rices  mus t be a sca lar mat rix.
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9.7   Cha racte rs

If D(ν)(R)  and  D(µ)(R)  are  rel ated by a sim ilari ty tra nsfor matio n the n

D(ν)(R)  giv es a rep rese ntati on of G tha t is equ ivale nt to D(µ)(R) .  The se two 

set s of mat rices  are  gen erall y dif feren t, whe reas the ir str uctur e is the  sam e.

We wis h, the refor e, to ans wer the  que stion : wha t int rinsi c pro perti es of the 

mat rix rep resen tatio ns are  inv arian t und er coo rdina te tra nsfor matio ns?

Con sider 

∑ [CD(R) C-1]ii  =  ∑ CikDkl(R) Cli
-1

 i ikl 

     =  ∑ δklDkl(R) 
 kl  

      =  ∑ Dkk(R)  , the  tra ce of D(R) .
  k    

We see  tha t the  tra ce, or cha racte r, is an inv arian t und er a cha nge of

coo rdina te axe s.  We wri te the  cha racte r as

      χ(R)   =  ∑ Dii(R) 
           i  

Equ ivale nt rep resen tatio ns hav e the  sam e set  of cha racte rs.  The 

 cha racte r of R in the  rep resen tatio n µ is wri tten

    χ(µ)(R)  or [µ; R]. 

Now , the  con jugat e ele ments  of G hav e the  for m S = URU -1, and  the n

   D(R)  = D(U) D(R) [D(R) ]-1

the refor e

       χ(S)  = χ(R) .

We can  des cribe  G by giv ing its  cha racte rs in a par ticul ar rep resen tatio n;

all  ele ments  in a cla ss hav e the  sam e χ.  
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10

SOM E LIE  GROU PS OF  TRAN SFORM ATION S

We sha ll con sider  tho se Lie  gro ups tha t can  be des cribe d by a fin ite

set  of con tinuo usly var ying ess entia l par amete rs a1,.. .ar:

         xi´  =  f i(x1,.. .xn; a1,.. .ar)  =  f(x ; a) .

A set  of par amete rs a exi sts tha t is ass ociat ed wit h the  inv erse

tra nsfor matio ns:

           x  = f(x ́ ; a). 

The se equ ation s mus t be sol vable  to giv e the  xi’s in ter ms of the  xi´’s .

10. 1  Lin ear gro ups

The  gen eral lin ear gro up GL( n) in n-d imens ions is giv en by the  set 

of equ ation s
  n  

         xi´  =  ∑ aijxj , i = 1 to n,
         j = 1  

in whi ch det  |aij| ≠ 0.

The  gro up con tains  n2 par amete rs tha t hav e val ues cov ering  an inf inite 

ran ge.  The  gro up GL( n) is sai d to be not  clo sed.

All  lin ear gro ups wit h n > 1 are  non -abel ian.  The  gro up GL( n) is

iso morph ic to the  gro up of n × n mat rices ; the  law  of com posit ion is

the refor e mat rix mul tipli catio n.

The  spe cial lin ear gro up of tra nsfor matio ns SL( n) in n-d imens ions is

obt ained  fro m GL( n) by imp osing  the  con ditio n det | aij | = 1.  A fun ction al

rel ation  the refor e exi sts amo ng the  n2 - par amete rs so tha t the  num ber of

req uired  par amete rs is red uced to (n2 − 1). 
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10. 2  Ort hogon al gro ups

If the  tra nsfor matio ns of the  gen eral lin ear gro up GL( n) are  suc h
tha t

                n
       ∑ xi

2 → inv arian t ,
               i = 1

the n the  res trict ed gro up is cal led the  ort hogon al gro up, O(n ), in n-

dim ensio ns.  The re are  [n + n(n  - 1)/ 2] con ditio ns imp osed on the  n2

par amete rs of GL( n), and  the refor e the re are  n(n  - 1)/ 2 ess entia l

par amete rs of O(n ).

For  exa mple,  in thr ee dim ensio ns

     x´  =  Ox ; O ≡ { O3×3: OOT = I, det O = 1, aij ∈ R}

whe re

           a11  a12  a13   
          O  =   a21  a22  a23   .

  a31   a32  a33   

We hav e

x1´
2 +x2´

2 + x3´
2  =  x1

2 +x2
2 +x3

2 → inv arian t und er O(3 ).

Thi s inv arian ce imp oses six  con ditio ns on the  ori ginal  nin e par amete rs, and 

the refor e O(3 ) is a thr ee-pa ramet er gro up.

10. 3  Uni tary gro ups

If the  xi’s and  the  aij’s of the  gen eral lin ear gro up GL( n) are 

com plex,  and  the  tra nsfor matio ns are  req uired  to lea ve xx† inv arian t in the 

com plex spa ce, the n we obt ain the  uni tary gro up U(n ) in n-d imens ions: 

      U(n )  ≡  { Un×n: UU† = I, det U ≠ 0, uij ∈ C}.
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The re are  2n2 ind epend ent rea l par amete rs (th e rea l and  ima ginar y par ts of

the  aij’s) , and  the  uni tary con ditio n imp oses n + n(n −1) con ditio ns on the m

so the  gro up has  n2 rea l par amete rs.  The  uni tary con ditio n mea ns tha t

    ∑j |aij|
2  =  1,

and  the refor e

        |aij|
2  ≤ 1 for  all  i, j.

The  par amete rs are  lim ited to a fin ite ran ge of val ues, and  the refor e the 

gro up U(n ) is sai d to be clo sed.

10. 4  Spe cial uni tary gro ups

If we imp ose the  res trict ion det U = +1 on the  uni tary gro up U(n ),

we obt ain the  spe cial uni tary gro up SU( n) in n-d imens ions: 

SU( n)  ≡  {Un×n: UU† = I, det U = +1,  uij ∈ C}.

The  det ermin antal  con ditio n red uces the  num ber of req uired  rea l

par amete rs to (n2 − 1).  SU( 2) and  SU( 3) are  imp ortan t in Mod ern Phy sics. 

10. 5  The  gro up SU( 2), the  inf inite simal  for m of SU( 2), and  the 

Pau li spi n mat rices 

The  spe cial uni tary gro up in 2-d imens ions,  SU( 2), is def ined as

      SU( 2)  ≡  {U2×2: UU† = I, det U = +1,  uij ∈ C}.

It is a thr ee-pa ramet er gro up.

The  def ining  con ditio ns can  be use d to obt ain the  mat rix

rep resen tatio n in its  sim plest  for m; let 

          a   b   
U  =              

                   c   d   
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whe re a, b, c, d ∈ C.

The  her mitia n con jugat e is

                   a*   c*  
        U†  =               ,

          b*   d*
and  the refor e

                      |a| 2 + |b| 2     ac*  + bd*    
      UU†  =              .

           a*c  + b*d       |c| 2 + |d| 2     
The  uni tary con ditio n giv es

         |a| 2 + |b| 2  =  |c| 2 + |d| 2  =  1,

and  the  det ermin antal  con ditio n giv es

          ad  -  bc  =  1.

Sol ving the se equ ation s , we obt ain

   c = -b* , and  d = a*. 

The  gen eral for m of SU( 2) is the refor e

          a     b     
          U =                .
                  −b*  a*   

We now  stu dy the  inf inite simal  for m of SU( 2); it mus t hav e the 

str uctur e

    1   0         δa    δb        1 + δa     δb
  Uinf   =           +                   =                          .

    0   1       −δb*  δa*       −δb*   1 + δa*

The  det ermin antal  con ditio n the refor e giv es

       det Uinf   =  (1 + δa)( 1 + δa*)  +δbδb*  =  1.

To fir st ord er in the  δ’s,  we obt ain

     1 + δa* + δa  =  1,
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or
                    δa  =  −δa*. 

so tha t

                     1 + δa     δb
                  Uinf   =                         .

                       −δb*    1 − δa   

The  mat rix ele ments  can  be wri tten in the ir com plex for ms:

             δa = iδα/2 , δb = δβ/2 + iδγ/2. 

(Th e fac tor of two  has  bee n int roduc ed for  lat er con venie nce). 

     1 + iδα/2      δβ/2 + iδγ/2
         Uinf   =          .

   −δβ/2 + iδγ/2     1 − iδα/2   

Now , any  2×2 mat rix can  be wri tten as a lin ear com binat ion of the 

mat rices 

1   0     0   1      0 −i      1   0  
        ,           ,           ,            .   

                  0   1    1   0       i   0      0 −1

as fol lows

 a   b           1   0          0   1          0 −i          1   0   
                    = A           + B           + C          + D           ,

 c   d           0   1          1   0          i   0          0 −1  

whe re
a = A + D, b = B -iC , c = B + iC,  and  d = A - D.

We the n hav e

   a   b   (a + d)  1   0     (b + c)   0  1     i(b  − c) 0 −i       (a − d) 1   0
           =                    +                     +                     +                     .
   c  d       2       0   1         2      1  0          2      i   0          2      0 −1  

The  inf inite simal  for m of SU( 2) can  the refor e be wri tten
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           Uinf   =    I   +  (iδγ/2) 1   +   (iδβ/2) 2   +  (iδα/2) 3 ,
or

       Uinf   =  I  +  (i/ 2)∑ δτj j . j = 1 to 3.
Thi s is the  Lie  for m.

The  j’s are  the  Pau li spi n-mat rices :; the y are  the  gen erato rs of the  gro up

SU( 2):

                   0  1             0 −i             1  0  
           1 =          , 2 =          , 3  =          .
                   1  0             i   0             0 −1  

The y pla y a fun damen tal rol e in the  des cript ion of spi n-1/2  par ticle s in

Qua ntum Mec hanic s. (Se e lat er dis cussi ons). 

10. 6  Com mutat ors of the  spi n mat rices  and  str uctur e con stant s

We hav e pre vious ly int roduc ed the  com mutat ors of the  inf inite simal 

gen erato rs of a Lie  gro up in con necti on wit h the ir Lie  Alg ebra.   In thi s

sec tion,  we con sider  the  com mutat ors of the  gen erato rs of SU( 2); the y are 

fou nd to hav e the  sym metri c for ms

  [ 1, 2]  =   2i 3,  [ 2, 1]  = −2i 3,

  [ 1, 3]  =  -2i 2, [ 3, 1]  =    2i 2,

  [ 2, 3]  =   2i 1,  [ 3, 2]  =  −2i 1.

We see  tha t the  com mutat or of any  pai r of the  thr ee mat rices  giv es a

con stant  mul tipli ed by the  val ue of the  rem ainin g mat rix, thu s

  [ j, k]  = εjkl2i l  .

whe re the  qua ntity  εjkl = ±1,  dep endin g on the  per mutat ions of the  ind ices. 

(ε(xy )z  =  +1,  ε(yx )z  =  −1 ..e tc... ).
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The  qua ntiti es 2iεjkl are  the  str uctur e con stant s ass ociat ed wit h the  gro up.

Oth er pro perti es of the  spi n mat rices  are  fou nd to be

1
2  =  2

2  =  3
2  =  I; 1 2  = i 3, 2 3  =  i 1, 3 1  =  i 2.

10. 7  Hom omorp hism of SU( 2) and  O+(3) 

We can  for m the  mat rix

  P  =  xT   =  xj j, j = 1, 2, 3

fro m the  mat rices 

   x  =  [x1, x2, x3] and    =  [ 1, 2, 3] :

the refor e

       x3         x1 − ix2    
P     =                               .

    x1 + ix2        -x3    

We see  tha t

                x3         x1 − ix2   
                 P†  =  (P*)T =                                =  P,

              x1 + ix2        −x3     

so tha t P is her mitia n.

Fur therm ore,

         TrP  =  0,
and 

         det P  =  −(x1
2 + x2

2 + x3
2).

Ano ther mat rix, P ,́ can  be for med by car rying  out  a sim ilari ty

tra nsfor matio n, thu s

    P´  =  UPU †, (U ∈ SU( 2)).

A sim ilari ty tra nsfor matio n lea ves bot h the  tra ce and  the  det ermin ant
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unc hange d, the refor e

   TrP  =  TrP ,́
and 

  det P  =  det P .́

How ever,  the  con ditio n    det P  = det P´  mea ns tha t

    xxT  =  x´x´T,
or

       x1
2 + x2

2 + x3
2  =  x1´

2 + x2´
2 + x3´

2  .

The  tra nsfor matio n P´ = UPU † is the refor e equ ivale nt to a thr ee-

dim ensio nal ort hogon al tra nsfor matio n tha t lea ves xxT inv arian t.

10. 8  Irr educi ble rep resen tatio ns of SU( 2)

We hav e see n tha t the  bas ic for m of the  2×2 mat rix rep resen tatio n
of

 the  gro up SU( 2) is

                     a    b    
  U  =                 , a, b ∈ C; |a| 2  + |b| 2 =1. 
           −b*  a*  

 Let  the  bas is vec tors of thi s spa ce be

  1                0    
  x1 =       and  x2 =      .

  0                1   

We the n hav e
            a  

        x1´  =  Ux1 =          =  ax1  −  b*x2 ,
           −b*  

and 
           b    

        x2´  =  Ux2 =          =  bx1  +  a*x2 ,
           a*  

and  the refor e
  x´  =  Utx.

If we wri te a 2-d imens ional  vec tor in thi s com plex spa ce as c = [u,  v]
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the n the  com ponen ts tra nsfor m und er SU( 2) as

  u´  =  au  +  bv  

and 

   v´  =  b*u   +  a*v  ,

and  the refor e

  c´  =  Uc .

We see  tha t the  com ponen ts of the  vec tor c tra nsfor m dif feren tly

fro m tho se of the  bas is vec tor x — the  tra nsfor matio n mat rices  are  the 

tra nspos es of eac h oth er.  The  vec tor c = [u,  v] in thi s com plex spa ce is

cal led a spi nor (Ca rtan,  191 3).

To fin d an irr educi ble rep resen tatio n of SU( 2) in a 3-d imens ional 

spa ce, we nee d a set  of thr ee lin early  ind epend ent bas is fun ction s.

Fol lowin g Wig ner (se e bib liogr aphy) , we can  cho ose the  pol ynomi als

u2, uv,  and  v2,

and  int roduc e the  pol ynomi als def ined by
                   1 + m   1 - m

              j = 1                u       v      
              f      =                               
              m          √ {(1  + m)!  (1 + m)! }

whe re

          j = n/2  (th e dim ensio n of the  spa ce is n + 1) .

and 

         m = j, j − 1, ... −j .

In the  pre sent cas e, n = 2, j = 1, and  m = 0, ±1. 

(Th e fac tor 1/√ {(1 + m)!  (1 − m)! } is cho sen to mak e the  rep resen tativ e
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mat rix uni tary) .

We hav e, the refor e

f1
1 = u2/√2  , f0

1 = uv,  and  f-1
1 = v2/√2 .

A 3×3 rep resen tatio n of an ele ment U ∈ SU( 2) in thi s spa ce can  be fou nd

by def ining  the  tra nsfor matio n

        Ufm
1(u,  v) = fm

1(u´ , v´) .
We the n obt ain

        Ufm
1(u,  v) =  (au  + bv) 1 + m(-b *u + a*v )1 - m  , m = 0, ±1,  

              √{( 1 + m)! (1 − m)! }

so tha t

       Uf1
1(u,  v) = (au  + bv) 2/√ 2

                      = (a2u2 + 2abuv  + b2v2)/√  2   ,

       Uf0
1(u,  v) = (au  + bv) (−b*u  + a*v )

                      = -ab *u2 + (|a |2 − |b| 2)uv  + a*b v2 ,
and 

       Uf-1
1(u,  v) = (−b*u  + a*v )2/√ 2

                       = (b* 2u2 − 2a* b*uv + a*2v2)/√ 2 .

We the n hav e

a2       √2a b         b2          f1
1        f1

1´   
      −√2a b*  |a| 2 − |b| 2   √2a *b    f0

1   =   f0
1´   

b*2    −√2a *b*     a*2        f-1
1        f-1

1´
or

       UF  = F .́

We fin d tha t UU † = I and  the refor e U is,  ind eed, uni tary. 

Thi s pro cedur e can  be gen erali zed to an (n + 1)- dimen siona l spa ce as

fol lows
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Let 

           fm
j(u,  v) =                uj + mvj - m        , m = j, j − 1, ... −j.

              √{( j + m)! (j − m)! }

(No te tha t j = n/2  = 1/2 , 1/1 , 3/2 , 2/1 , ..) .

For  a giv en val ue of j, the re are  2j + 1 lin early  ind epend ent pol ynomi als,

and  the refor e we can  for m a (2j  + 1) × (2j  + 1) rep resen tativ e mat rix of an

ele ment U of SU( 2):

Ufm
j(u,  v)  =  fm

j(u´ , v´) .

The  det ails of thi s gen eral cas e are  giv en in Wig ner’s  cla ssic tex t.  He

dem onstr ates the  irr educi bilit y of the  (2j  + 1)- dimen siona l rep resen tatio n

by sho wing tha t any  mat rix M whi ch com mutes  wit h Uj for  all  a, b suc h

tha t |a| 2 + |b| 2 = 1 mus t nec essar ily be a con stant  mat rix, and  the refor e, by

Sch ur’s lem ma, Uj is an irr educi ble rep resen tatio n.

10. 9  Rep resen tatio ns of rot ation s and  the  con cept of ten sors

We hav e dis cusse d 2- and  3-d imens ional  rep resen tatio ns of the 

ort hogon al gro up O(3 ) and  the ir con necti on to ang ular mom entum 

ope rator s.  Hig her-d imens ional  rep resen tatio ns of the  ort hogon al gro up can 

be obt ained  by con sider ing a 2-i ndex qua ntity  , Tij — a ten sor — tha t

con sists  of a set  of 9 ele ments  tha t tra nsfor m und er a rot ation  of the 

coo rdina tes as fol lows: 

Tij → Tij́   =  RilRjmTlm (su m ove r rep eated  ind ices 1, 2, 3). 

If Tij = Tji (Tij is sym metri c), the n thi s sym metry  is an inv arian t und er

rot ation s; we hav e



98

Tjí   =  RjlRimTlm  =  RjmRilTml  =  RilRjmTlm  =  Tij́  .

If TrT ij  =  0, the n so is TrT ij́ , for 

Tií   =  RilRimTlm  =  (RTR)lmTlm  =  δlmTlm  =  Tll  =  0.

The  com ponen ts of a sym metri c tra celes s 2-i ndex ten sor con tains  5

mem bers so tha t the  tra nsfor matio n Tij → Tij́  = RilRjmTlm def ines a new 

rep resen tatio n of the m of dim ensio n 5.

Any  ten sor Tij can  be wri tten

Tij  =  (T ij + Tji)/2  + (Tij − Tji)/2  ,

and  we hav e

Tij  =  (T ij + Tji)/2  = (Tij − (δijTll)/3 ) + (δijTll)/3  .

The  dec ompos ition  of the  ten sor Tij giv es any  2-i ndex ten sor in ter ms of a

sum  of a sin gle com ponen t, pro porti onal to the  ide ntity , a set  of 3

ind epend ent qua ntities  com bined  in an ant i-sym metri c ten sor (Tij − Tji)/2 ,

and  a set  of 5 ind epend ent com ponen ts of a sym metri c tra celes s ten sor.

We wri te the  dim ensio nal equ ation 

   9 = 1 ⊕ 3 ⊕ 5 .

Thi s is as far  as it is pos sible  to go in the  pro cess of dec ompos ition : no

oth er sub sets of 2-i ndex ten sors can  be fou nd tha t pre serve  the ir ide ntiti es

und er the  def ining  tra nsfor matio n of the  coo rdina tes.  Rep resen tatio ns wit h

no sub sets of ten sors tha t pre serve  the ir ide ntiti es und er the  def ining 

rot ation s of ten sors are  irred ucibl e rep resen tatio ns.
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We sha ll see  tha t the  dec ompos ition  of ten sor pro ducts  int o

sym metri c and  ant i-sym metri c par ts is imp ortan t in the  Qua rk Mod el of

ele menta ry par ticle s.

The  rep resen tatio ns of the  ort hogon al gro up O(3 ) are  fou nd to be

imp ortan t in def ining  the  int rinsi c spi n of a par ticle .  The  dyn amics  of a

par ticle  of fin ite mas s can  alw ays be des cibed  in its  res t fra me (al l ine rtial 

fra mes are  equ ivale nt!),  and  the refor e the  par ticle  can  be cha racte rized  by

rot ation s.  All  kno wn par ticle s hav e dyn amica l sta tes tha t can  be des cribe d

in ter ms of the  ten sors of som e irr educi ble rep resen tatio n of O(3 ).  If the 

dim ensio n of the  irr ep is (2j  + 1) the n the  par ticle  spi n is fou nd to be

pro porti onal to j.  In Par ticle  Phy sics,  irr eps wit h val ues of j = 0, 1, 2,. .. and 

wit h j = 1/2 , 3/2 , ...  are  fou nd tha t cor respo nd to the  fun damen tal bos ons

and  fer mions , res pecti vely. 

The  thr ee dim ensio nal ort hogon al gro up SO( 3) (de t = +1)  and  the 

two  dim ensio nal gro up SU( 2) hav e the  sam e Lie  alg ebra.   In the  cas e of

the  gro up SU( 2), the  (2j  + 1)- dimen siona l rep resen tatio ns are  all owed for 

bot h int eger and  hal f -in teger  val ues of j, whe reas,  the  rep resen tatio ns of

the  gro up SO( 3) are  lim ited to int eger val ues of j.  Sin ce all  the 

rep resen tatio ns are  all owed in SU( 2), it is cal led the  cov ering  gro up.  We

not e tha t rot ation s thr ough φ  and  φ + 2π hav e dif feren t eff ects on the  1/2 -

int eger rep resen tatio ns, and  the refor e the y are  (sp inor)  tra nsfom ation s

ass ociat ed wit h SU( 2).
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11

THE  GROU P STR UCTUR E OF LOREN TZ TR ANSFO RMATI ONS

The  squ are of the  inv arian t int erval  s, bet ween the  ori gin [0,  0, 0, 0]

of a spa cetim e coo rdina te sys tem and  an arb itrar y eve nt xµ = [x0, x1, x2,

x3] is,  in ind ex not ation 

                             s2 = xµxµ = x´µx´µ , (su m ove r µ = 0, 1, 2, 3). 

The  low er ind ices can  be rai sed usi ng the  met ric ten sor

                            ηµν = dia g(1, –1,  –1,  –1) ,

 so tha t

                         s2 = ηµνx
µxν = ηµνx´µx´v , (su m ove r µ and  ν).

The  vec tors now  hav e con trava riant  for ms.

In mat rix not ation , the  inv arian t is

                             s2 = xT x = x´T x´ .

(Th e tra nspos e mus t be wri tten exp licit ly).

The  pri med and  unp rimed  col umn mat rices  (co ntrav arian t vec tors)  are 

rel ated by the  Lor entz mat rix ope rator , L

                                               x´ = Lx .

We the refor e hav e

                                   xT x = (Lx)T (Lx)

                                           = xTLT Lx .

The  x’s are  arb itrar y, the refor e

                                  LT L = .
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Thi s is the  def ining  pro perty  of the  Lor entz tra nsfor matio ns.

The  set  of all  Lor entz tra nsfor matio ns is the  set  L of all  4 × 4

mat rices  tha t sat isfie s the  def ining  pro perty 

                              L = {L: LT L = ; L: all  4 × 4 rea l mat rices ;

               = dia g(1, –1,  –1,  –1} .

(No te tha t eac h L has  16 (in depen dent)  rea l mat rix ele ments , and  the refor e

bel ongs to the  16- dimen siona l spa ce, R16).

11. 1  The  gro up str uctur e of L

Con sider  the  res ult of two  suc cessi ve Lor entz tra nsfor matio ns L1

and  L2 tha t tra nsfor m a 4-vec tor x as fol lows

                             x → x´ → x´´

whe re

                      x´ = L1x ,

and 

                    x´  ́  = L2x .́

The  res ultan t vec tor x´  ́ is giv en by

                     x´  ́= L2(L1x)

                            = L2L1x

                           = Lcx

whe re

                      Lc = L2L1 (L1 fol lowed  by L2).

If the  com bined  ope ratio n Lc is alw ays a Lor entz tra nsfor matio n the n it

mus t sat isfy
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                               Lc
T Lc =  .

We mus t the refor e hav e

                     (L2L1)
T (L2L1) = 

or

                       L1
T(L2

T L2)L1 = 

so tha t

                                L1
T L1 = ,    (L1, L2 ∈ L)

the refor e

                              Lc = L2L1 ∈ L .

Any  num ber of suc cessi ve Lor entz tra nsfor matio ns may  be car ried out  to

giv e a res ultan t tha t is its elf a Lor entz tra nsfor matio n.

If we tak e the  det ermin ant of the  def ining  equ ation  of L,

                           det (LT L) = det 

we obt ain

                      (de tL)2 = 1  (de tL = det LT)

so tha t

                         det L = ±1. 

 Sin ce the  det ermin ant of L is not  zer o, an inv erse tra nsfor matio n L–1

exi sts, and  the  equ ation  L–1L = I, the  ide ntity , is alw ays val id.

Con sider  the  inv erse of the  def ining  equ ation 

                             (LT L)–1 = –1 ,

or
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                L–1 –1(LT)–1 = –1 .

Usi ng  = –1, and  rea rrang ing, giv es

                  L–1 (L–1)T =  .

Thi s res ult sho ws tha t the  inv erse L–1 is alw ays a mem ber of the  set  L.

We the refor e see  tha t

1. If L1 and  L2 ∈ L , the n L2 L1 ∈ L

2. If L ∈ L , the n L–1 ∈ L

3. The  ide ntity  I = dia g(1, 1, 1, 1) ∈ L

and 

4. The  mat rix ope rator s L obe y ass ociat ivity .

The  set  of all  Lor entz tra nsfor matio ns the refor e for ms a gro up.

11. 2  The  rot ation  gro up, rev isite d

Spa tial rot ation s in two  and  thr ee dim ensio ns are  Lor entz

tra nsfor matio ns in whi ch the  tim e-com ponen t rem ains unc hange d.

Let  R be a rea l 3×3 mat rix tha t is par t of a Lor entz tra nsfor matio n

wit h a con stant  tim e-com ponen t.  In thi s cas e, the  def ining  pro perty  of the 

Lor entz tra nsform ation s lea ds to

      RTR = I , the  ide ntity  mat rix, dia g(1,1 ,1).

Thi s is the  def ining  pro perty  of a thr ee-di mensi onal ort hogon al mat rix

If x = [x1, x2, x3] is a thr ee-ve ctor tha t is tra nsfor med und er R to

giv e x´ the n
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                         x´Tx´ = xTRTRx

                                  = xTx = x1
2 + x2

2 + x3
2

                                                   = inv arian t und er R.

The  act ion of R on any  thr ee-ve ctor pre serve s len gth.  The  set  of all  3×3

ort hogon al mat rices  is den oted by O(3) ,

                 O(3)  = {R: RTR = I, rij ∈ R}.

The  ele ments  of thi s set  sat isfy the  fou r gro up axi oms.

The  gro up O(3)  can  be spl it int o two  par ts tha t are  sai d to be

dis conne cted:: one  wit h det R = +1 and  the  oth er wit h det R = -1.   The 

two  par ts are  wri tten

              O+(3)   =  {R: det R = +1} 

and 

               O-(3)   =  {R: det R = -1}  .

If we def ine the  par ity ope rator  , P, to be the  ope rator  tha t ref lects 

all  poi nts in a 3-d imens ional  car tesia n sys tem thr ough the  ori gin the n

                     −1   0   0    
                       P =    0 −1   0  .
                                0   0 −1   

The  two  par ts of O(3)  are  rel ated by the  ope rator  P:

if R ∈ O+(3)  the n PR ∈ O-(3) ,
and 
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if R´ ∈ O-(3)  the n PR´ ∈ O+(3) .

We can  the refor e con sider  onl y tha t par t of O(3)  tha t is a gro up, nam ely

O+(3) , tog ether  wit h the  ope rator  P.

11. 3  Con necte d and  dis conne cted par ts of the  Lor entz gro up

We hav e sho wn, pre vious ly, tha t eve ry Lor entz tra nsfor matio n, L,

has  a det ermin ant equ al to ±1.   The  mat rix ele ments  of L cha nge

con tinuo usly as the  rel ative  vel ocity  cha nges con tinuo usly.   It is not 

pos sible , how ever,  to mov e con tinuo usly in suc h a way  tha t we can  go

fro m the  set  of tra nsfor matio ns wit h det L = +1 to tho se wit h det L = -1;  we

say  tha t the  set  {L: det L = +1}  is dis conne cted fro m the  set  {L: det L = −

1}. 

If we wri te the  Lor entz tra nsfor matio n in its  com ponen t for m

L → Lµ
ν

whe re µ = 0,1 ,2,3 lab els the  row s, and  ν = 0,1 ,2,3 lab els the  col umns the n

the  tim e com ponen t L0
0 has  the  val ues

L0
0 ≥ +1 or L0

0 ≤ −1.

The  set  of tra nsfor matio ns can  the refor e be spl it int o fou r

dis conne cted par ts, lab elled  as fol lows: 

    {L↑
+} = {L: det L = +1,  L0

0 ≥ +1} 

    {L↑
-} = {L: det L = −1, L0

0 ≥ +1} 

    {L↓
+} = {L: det L = +1,  L0

0 ≤ −1}, 

and 
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       {L↓
-} = {L: det L = −1, L0

0 ≤ -1} .

The  ide ntity  is in {L↑
+}.

11. 4  Par ity, tim e-rev ersal  and  ort hochr onous  tra nsfor matio ns

Two  dis crete  Lor entz tra nsfor matio ns are 

i) the  par ity tra nsfor matio n

            P = {P: r → −r, t → t}

               = dia g(1, −1, −1, −1), 

and 

ii)  the  tim e-rev ersal  tra nsfpr matio n

            T = {T: r → r, t → -t} 

               = dia g(−1, 1, 1, 1}. 

The  dis conne cted par ts of {L} are  rel ated by the  tra nsfor matio ns

tha t inv olve P, T, and  PT, as sho wn:

       PT
   L↑

+                                            L↓
-

 P T

   L↑
-                                             L

↓
-

Con necti ons bet ween the  dis conne cted par ts of Lor entz tra nsfor matio ns

The  pro per ort hochr onous  trans forma tions  are  in the  gro up L↑
+.  We

see  tha t it is not  nec essar y to con sider  the  com plete  set  {L} of Lor entz
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tra nsfor matio ns — we nee d con sider  onl y tha t sub set {L↑
+} tha t for ms a

gro up by its elf, and  eit her P, T, or PT com bined .  Exp erime nts hav e

sho wn cle ar vio latio ns und er the  par ity tra nsfor matio n, P and  vio latio ns

und er T hav e bee n inf erred  fro m exp erime nt and  the ory, com bined .

How ever,  not  a sin gle exp erime nt has  bee n car ried out  tha t sho ws a

vio latio n of the  pro per ort hochr onous  tra nsfor matio ns, {L↑
+}.

12

ISO SPIN

Par ticle s can  be dis tingu ished  fro m one  ano ther by the ir int rinsi c

pro perti es: mas s, cha rge, spi n, par ity, and  the ir ele ctric  and  mag netic 

mom ents.  In our  on- going  que st for  an und ersta nding  of the  tru e nat ure of

the  fun damen tal par ticle s, and  the ir int eract ions,  oth er int rinsi c pro perti es,

wit h nam es suc h as “is ospin ”  and  “st range ness” , hav e bee n dis cover ed.

The  int rinsi c pro perti es are  def ined by qua ntum num bers;  for  exa mple,  the 

qua ntum num ber a is def ined by the  eig enval ue equ ation 

         Aφ  =  a φ

whe re A is a lin ear ope rator , φ is the  wav efunc tion of the  sys tem in the 

zer o-mom entum  fra me, and  a is an eig enval ue of A.  

In thi s cha pter,  we sha ll dis cuss the  fir st of the se new  pro perti es to

be int roduc ed, nam ely, iso spin.

The  bui lding  blo cks of nuc lei are  pro tons (po sitiv ely cha rged)  and 

neu trons  (ne utral ).  Num erous  exp erime nts on the  sca tteri ng of pro tons by

pro tons,  and  pro tons by neu trons , hav e sho wn tha t the  nuc lear for ces
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bet ween pai rs hav e the  sam e str ength , pro vided  the ang ular mom entum 

and  spi n sta tes are  the  sam e.  The se obs ervat ions for m the  bas is of an

imp ortan t con cept — the  cha rge-i ndepe ndenc e of the  nuc leon- nucle on

for ce.  (Co rrect ions for  the  cou lomb eff ects in pro ton-p roton  sca tteri ng

mus t be mad e).  The  ori gin of thi s con cept is fou nd in a new  sym metry 

pri ncipl e.  In 193 2, Cha dwick  not  onl y ide ntifi ed the  neu tron in stu dying 

the  int eract ion of alp ha-pa rticl es on ber ylliu m nuc lei but  als o sho wed tha t

its  mas s is alm ost equ al to the  mas s of the  pro ton.  (Re cent meas ureme nts

giv e

  mas s of pro ton = 938 ⋅272 31(28 ) MeV /c2

and 

  mas s of neu tron = 939 ⋅565 63(28 ) MeV /c2)

Wit hin a few  mon ths of Cha dwick ’s dis cover y, Hei senbe rg int roduc ed a

the ory of nuc lear for ces in whi ch he con sider ed the  neu tron and  the  pro ton

to be two  “st ates”  of the  sam e obj ect — the  nuc leon.   He int roduc ed an

int rinsi c var iable , lat er cal led iso spin,  tha t per mits the  cha rge sta tes (+,  0) of

the  nuc leons  to be dis tingu ished .  Thi s new  var iable  is nee ded (in  add ition 

to the  tra ditio nal spa ce-sp in var iable s) in the  des cript ion of  nuc leon- 

nuc leon sca tteri ng.

In nuc lei, pro tons and  neu trons  beh ave in a rem arkab ly sym metri cal

way : the  bin ding ene rgy of a nuc leus is clo sely pro porti onal to the  num ber

of neu trons  and  pro tons,  and  in lig ht nuc lei (ma ss num ber <40 ), the 

num ber of neu trons  can  be equ al to the  num ber of pro tons. 
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Bef ore dis cussi ng the  iso spin of par ticle s and  nuc lei, it is nec essar y to

int roduc e an ext ended  Pau li Exc lusio n Pri ncipl e.  In its  ori ginal  for m, the 

Pau li Exc lusio n Pri ncipl e was  int roduc ed to acc ount for  fea tures  in the 

obs erved  spe ctra of ato ms tha t cou ld not  be und ersto od usi ng the  the n

cur rent mod els of ato mic str uctur e:

 no two  ele ctron s in an ato m can  exi st in the  sam e qua ntum sta te def ined

by the  qua ntum num bers n, , m , ms whe re n is the  pri ncipa l qua ntum

num ber,  is the  orb ital ang ular mom entum  qua ntum num ber, m  is the 

mag netic  qua ntum num ber, and  ms is the  spi n qua ntum num ber.  

For  a sys tem of N par ticle s, the  com plete  wav efunc tion is wri tten as

a pro duct of sin gle-p art icle wav efunc tions 

    Ψ(1,  2, ... N)  =  ψ(1) ψ(2) ...ψ(N) .

Con sider  thi s for m in the  sim plest  cas e — for  two  ide ntica l par ticle s.  Let 

one  be in a sta te lab elled  Ψa and  the  oth er in a sta te Ψb.  For  ide ntica l

par ticle s, it mak es no dif feren ce to the  pro babil ity den sity |Ψ|2 of the  2-

par ticle  sys tem if the  par ticle s are  exc hange d:

|Ψ(1,  2)| 2  =  |Ψ(2,  1)| 2 , (th e Ψ’s are  not  mea surab le)

so tha t, eit her

   Ψ(2,  1)  =  Ψ(1,  2)  (sy mmetr ic)

or

   Ψ(2,  1)  = −Ψ(1,  2)  (an ti-sy mmetr ic).
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Let 

         ΨI  =  ψa(1) ψb(2)   (1 an a, 2 in b)

and 

        ΨII  =  ψa(2) ψ(1)   (2 in a, 1 in b). 

The  two  par ticle s are  ind istin guish able,  the refor e we hav e no way  of

kno wing whe ther ΨI or ΨII des cribe s the  sys tem; we pos tulat e tha t the 

sys tem spe nds 50%  of its  tim e in ΨI and  50%  of its  tim e in ΨII.  The  two -

par ticle  sys tem is con sider ed to be a lin ear com binat ion of ΨI and  ΨII:

We hav e, the refor e, eit her

                    Ψsym m   =  (1/ √2){ψa(1) ψb(2)  + ψa(2) ψb(1) } (BOS ONS)

or

                    Ψant isymm  = (1/ √2){ψa(1) ψb(2)  − ψa(2) ψb(1) } (FER MIONS ) .

(Th e coe ffici ent (1/ √2) nor maliz es the  sum  of the  squ ares to be 1). 

Exc hangi ng 1↔ 2 lea ves Ψsym m unc hange d, whe reas exc hangi ng par ticle s  

1↔ 2 rev erses  the  sig n of Ψant isymm  .

If two  par ticle s are  in ΨS, bot h par ticle s can  exi st in the  sam e sta te wit h    

a = b.  If two  par ticle s are  in ΨAS , and  a = b, we hav e ΨAS = 0 — the y

can not exi st in the  sam e qua ntum sta te.  Ele ctron s (fe rmion s, spi n = (1/ 2)h)

are  des cribe d by ant i-sym metri c wav efunc tions .

We can  now  intro duce a mor e gen eral Pau li Exc lusio n Pri ncipl e.

Wri te the  nuc leon wav efunc tion as a pro duct: 

Ψ(χ, q)  =  ψ(χ)φN(q)  ,
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whe re

        χ  =  χ(r, s)

 in whi ch r is the  spa ce vec tor, s is the  spi n, and  q is a cha rge or iso spin

lab el.

For  two  nuc leons , we wri te

       Ψ(χ1, q1; χ2, q2),

for  two  pro tons: 

        Ψ2p  = ψ1(χ1, χ2)φN(p1)φN(p2),

for  two  neu trons :

        Ψ2n  =  ψ2(χ1, χ2)φN(n1)φN(n2),

and  for  an n-p  pai r:

        Ψnp  = ψ3(χ1, χ2)φN(p1)φN(n2)

or

               = ψ4(χ1, χ2)φN(n1)φN(p2).

If we reg ard the  pro ton and  neu tron as dif feren t sta tes of the  sam e obj ect,

lab elled  by the  “ch arge or iso spin coo rdina te”, q, we mus t ext end the  Pau li

pri ncipl e to cov er the  new  coo rdina te: the  tot al wav efunc tion is the n

Ψ(χ1, q1; χ2, q2)  =  −Ψ(χ2, q2; χ1, q1) .

It mus t be ant i-sym metri c und er the  ful l exc hange .

For  a 2p-  or a 2n- pair,  the  exc hange  q1↔ q2 is sym metri cal, and  the refor e

the  spa ce-sp in par t mus t be ant i-sym metri cal.

For  an n-p  pai r, the  sym metri c (S)  and  ant i-sym metri c (AS )

“is ospin ” wav efunc tions  are 
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I) ΦS  =  (1/ √2){φN(p1)φN(n2) + φN(n1)φN(p2)}

(sy mmetr ic und er q1 ↔ q2),

and  the refor e the  spa ce-sp in par t is ant i-sym metri cal,

II) ΦAS  =  (1/ √2){φN(p1)φN(n2) − φN(n1)φN(p2)}

(an ti-sy mmetr ic und er q1 ↔ q2),

and  the refor e the  spa ce-sp in par t is sym metri cal.

We sha ll nee d the se res ults in lat er dis cussi ons of the  sym metri c and  ant i-

sym metri c pro perti es of qua rk sys tems. 

12. 1  Nuc lear -de cay

Nuc lei are  bou nd sta tes of neu trons  and  pro tons.   If the  num ber of

pro tons in a nuc leus is Z and  the  num ber of neu trons  is N the n the  mas s

num ber of the  nuc leus is A = N + Z.  Som e nuc lei are  nat urall y uns table .

A pos sible  mod e of dec ay is by the  emi ssion  of an ele ctron  (th is is β-de cay

— a pro cess tha t typ ifies  the  fun damen tal “we ak int eract ion”) .

We wri te the  dec ay as

      A
ZXN  →  A

Z+1 XN-1  + e–1 + νe  (β–-de cay)

or,  we can  hav e

        A
ZXN →  A

Z-1 XN-1  + e+ + νe  (β+ - dec ay).

A rel ated pro cess is tha t of ele ctron  cap ture of an orb ital ele ctron  tha t is

suf ficie ntly clo se to the  pos itive ly cha rged nuc leus: 

 e– + A
ZXN  →  A

Z+1 XN+1  + νe.

Oth er rel ated pro cesse s are 
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νe + A
ZXN  →   A

Z-1 XN-1  + e+

and 

 νe + A
ZXN  →  A

Z+1 XN-1  + e– .

The  dec ay of the  fre e pro ton has  not  bee n obs erved  at the  pre sent tim e.

The  exp erime ntal lim it on the  hal f-lif e of the  pro ton is > 1031 yea rs!  Man y

cur rent the ories  of the  mic rostr uctur e of mat ter pre dict tha t the  pro ton

dec ays.  If,  how ever,  the  lif e-tim e is > 1032 - 1033 yea rs the n the re is no

rea listi c pos sibil ity of obs ervin g the  dec ay direc tly (Th e lim it is set  by

Avo gadro ’s num ber and  the  fin ite num ber of pro tons tha t can  be

ass emble d in a sui table  exp erime ntal app aratu s).

The  fun damen tal β-de cay is tha t of the  fre e neu tron,  fir st obs erved  in

194 6.  The  pro cess is

 n0 →  p+ + e– + νe
0 , t1/2  = 10⋅37 ± 0⋅19 min utes. 

Thi s mea sured  lif e-tim e is of fun damen tal imp ortan ce in Par ticle  Phy sics

and  in Cos molog y.

Let  us set  up an alg ebrai c des cript ion of the  β-de cay pro cess,  rec ogniz ing

tha t we hav e a 2-s tate sys tem in whi ch the  tra nsfor mation p ↔ n occ urs:

In the  β–-de cay of a fre e neu tron

          n  →  p+ + e– + νe,

and  in the  β+-de cay of a pro ton, bou nd in a nuc leus,

         p  → n + e+ + νe  .
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12. 2  Iso spin of the  nuc leon

The  spo ntane ous tra nsfor matio ns p↔ n obs erved  in β-de cay lea d us

to int roduc e the  ope rator s ± tha t tra nsfor m p ↔ n:

      +φn  =  φp ,  +φp  =  0, (el imina tes a pro ton)

and 

       -φp  =  φn ,  -φn  =  0, (el imina tes a neu tron) .

Sin ce we are  dea ling wit h a two -stat e sys tem, we cho ose the  “is ospin ”

par ts of the  pro ton and  neu tron wav efunc tions  to be

          1        0
       φ(p)   =       and   φ(n)   =      ,

          0        1  

in whi ch cas e the  ope rator s mus t hav e the  for ms:

           0   1        0   0  
           +  =           and  - =           .

           0   0        1   0  

The y are  sin gular  and  non -herm itian .

We hav e, for  exa mple

           0   1    0        1  
       +φn  =                   =      , φn  →  φp,         

           0   0    1        0  

and 

           0   1    1       0  
        +φp  =                 =     ( + rem oves a pro ton). 

           0   0    0       0  

To mak e the  pre sent alg ebrai c des cript ion ana logou s to the  two -stat e

 sys tem of the  int rinsi c spi n of the  ele ctron , we int roduc e lin ear
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com binat ions of the  ± :

  0   1  
   1  =  +  +  -  =            =  1, a Pau li mat rix,

  1   0

and 

  0  −i  
  2  = i( -  −  +) =              =  2, a Pau li mat rix.

   i   0     

A thi rd ope rator  tha t is dia gonal  is,  as exp ected 

  1   0   
  3  =             =  3, a Pau li mat rix.

  0   1   

The  thr ee ope rator s { 1, 2, 3} the refor e obe y the  com mutat ion

rel ation s

       [ j/2,  k/2]   = iεjkl l/2 ,

whe re the  fac tor of( 1/2) is int roduc ed bec ause of the  2:1  hom omorp hism

bet ween SU( 2) and  O+(3) : the  vec tor ope rator 

           t  =  /2

is cal led the  iso spin ope rator  of the  nuc leon.

To cla ssify  the  iso spin sta tes of the  nuc leon we may  use  the 

pro jecti on of t on the  3rd  axi s, t3.  The  eig enval ues, t3, of t3 cor respo nd to

the  pro ton (t3 = +1/ 2) and  neu tron (t3 = −1/2 ) sta tes.  The  nuc leon is sai d to

be an iso spin dou blet wit h iso spin qua ntum num ber t = 1/2 .  (Th e num ber

of sta tes in the  mul tiple t is 2t + 1 = 2 for  t = 1/2 ).
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The  cha rge, QN of the  nuc leon can  be wri tten in ter ms of the  iso spin

qua ntum num bers: 

          QN  =  q(t 3 +(1 /2))  =  q or 0,

whe re q is the  pro ton cha rge.  (It is one  of the  gre at uns olved  pro blems  of

Par ticle  Phy sics to und ersta nd why  the  cha rge on the  pro ton is equ al to the 

cha rge on the  ele ctron ).

12. 3  Iso spin in nuc lei.

The  con cept of iso spin,  and  of rot ation s in iso spin spa ce, ass ociat ed

wit h ind ividu al nuc leons  can  be app lied to nuc lei — sys tems of man y

nuc leons  in a bou nd sta te.  

Let  the  iso spin of the  ith -nucl eon be ti, and  let  ti = i /2.   The 

ope rator  of a sys tem of A nuc leons  is def ined as

           T  =  ∑A
i=1  ti  =  ∑A

i=1  i/2 .

The  eig envalue  of T3 of the  iso spin ope rator  T3 is the  sum  of the  ind ividu al

com ponen ts

                   T3  =  ∑A
i=1  t3i  =  ∑A

i=1  τ3i/2

      = (Z – N)/ 2 .

The  cha rge, QN of a nuc leus can  be wri tten

QN  =  q∑A
i=1  (τ3i + 1)/ 2

              = q(T 3 + A/2 ) .

For  a giv en eig enval ue T of the  ope rator  T, the  sta te is (2T  + 1)- fold

deg enera te.  The  eig enval ues T3 of T3 are 
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 T3  =  −T, −T + 1,. ..0,. ..T + 1, T .

If the  Ham ilton ian H of the  nuc leus is cha rge-i ndepe ndent  the n

   [H, T]  =  0.

and  T is said  to be a goo d qua ntum num ber.  In lig ht nuc lei, whe re the 

iso spin- viola ting cou lomb int eract ion bet ween pai rs of pro tons is a sma ll

eff ect, the  con cept of iso spin is par ticul arly use ful.  The  stu dy of iso spin

eff ects in nuc lei was  fir st app lied to the  obs erved  pro perti es of the  low est-

lyi ng sta tes in the  thr ee nuc lei wit h mas s num ber A = 14:  14C, 14N, and  14O.

The  rel ative  ene rgies  of the  sta tes are  sho wn in the  fol lowin g dia gram: 

Ene rgy (Me V)

              6
 0+  T = 1, T3 = 1

              4

             0+   T = 1, T3 = 0

              2

                             0+   T = 1, T3 = −1               1+   T = 0, T3 = 0  
               0

An iso spin sin glet (T = 0) and  an iso spin tri plet (T = 1) in

 the  A = 14 sys tem.  In the  abs ence of the  cou lomb int eract ion, the  thr ee

 T = 1 sta tes wou ld be deg enera te.  

The  spi n and  par ity of the  gro und sta te of 14C, the  fir st exc ited sta te of 14N

and  the  gro und sta te of 14O are  mea sured  to be 0+; the se thr ee sta tes are 

cha racte rized  by T = 1.  The  gro und sta te of 14N has  spi n and  par ity 1+; it

is an iso spin sin glet (T = 0). 
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12. 4  Iso spin and  mes ons

We hav e see n tha t it is pos sible  to cla ssify  the  cha rge sta tes of

nuc leons  and  nuc lear iso bars usi ng the  con cept of iso spin,  and  the  alg ebra

of SU( 2).  It wil l be use ful to cla ssify  oth er par ticle s, inc ludin g fie ld

par ticle s (qu anta)  in ter ms of the ir iso spin.  

Yuk awa (19 35), fir st pro posed  tha t the  str ong nuc lear for ce bet ween

a pai r of nuc leons  is car ried by mas sive fie ld par ticle s cal led mes ons.  

Yuk awa’s  met hod was  a mas terfu l dev elopm ent of the  the ory of the 

ele ctrom agnet ic fie ld to inc lude the  cas e of a mas sive fie ld par ticle .  If ψπ is

the  “me son wav efunc tion”  the n the  Yuk awa dif feren tial equ ation  for  the 

mes on is

   ∂µ∂µ ψπ + (E0/hc)2ψπ  =  0.

whe re

        ∂µ∂µ  =  (1/ c2)∂2/∂t 2 − ∇2 .

The  r-d epend ent (sp atial ) for m of ∇2 is

          ∇2 → (1/ r2)d/ dr(r2d/d r)

The  sta tic (ti me-in depen dent)  sol ution  of thi s equ ation  is rea dily che cked to

be

       Ψ(r)   =  (−g2/r) exp(−r/r N)

whe re

rN = h/mπc = hc/m πc
2 = hc/E π

0,
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so tha t

                 1/r N
2  =  (Eπ

0/hc)2

The  “ra nge of the  nuc lear for ce” is def ined by the  con ditio n

    r  =  rN  =  h/mπc ≈ 2 ×10-13  cm. 

Thi s giv es the  mas s of the  mes on to be clo se to the  mea sured  val ue.  It is

imp ortan t to not e tha t the  “ra nge of the  for ce” ∝ 1/( mass of the  fie ld

qua ntum) .  In the  cas e of the  ele ctrom agnet ic fie ld, the  mas s of the  fie ld

qua ntum (th e pho ton) is zer o, and  the refor e the  for ce has  an inf inite  ran ge.  

The  mes ons com e in thr ee cha rge sta tes: +, −, and  0.  The  mes ons

hav e int rinsi c spi ns equ al to zer o (th ey are  fie ld par ticle s and  the refor e the y

are  bos ons),  and  the ir res t ene rgies  are  mea sured  to be

         Eπ±
0  =  139 ⋅5 MeV , and  Eπ0

0  =  135 ⋅6 MeV .

The y are  the refor e con sider ed to be mem bers of an iso spin tri plet: 

             t  = 1, t3  = ±1,  0.

In Par ticle  Phy sics,  it is the  cus tom to des ignat e the  iso spin qua ntum

num ber by I, we sha ll fol low thi s con venti on fro m now  on. 

The  thi rd com ponen t of the  iso spi n is an add itive  qua ntum num ber.

The  com bined  val ues of the  iso spin pro jecti ons of the  two  par ticle s, one 

wit h iso spin pro jecti on I3
(1)  , and  the  oth er wit h I3

(2) , is

      I3
(1+ 2)  =  I3

(1)   +  I3
(2)  .

The ir iso spins  com bine to giv e sta tes wit h dif feren t num bers in eac h

mul tiple t.  For  exa mple,  in pio n (me son)- nucle on sca tteri ng
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            π  +  N → sta tes wit h I3
(1 + 2) = (3/ 2) or (1/ 2).

The se val ues are  obt ained  by not ing tha t

         Iπ
(1)  = 1, and  IN

(2)  = 1/2 , so tha t

      I3π
(1)  + I3N

(2)   =  (±1 , 0)  +  (±1 /2)

      = (3/ 2), an iso spin qua rtet,  or (1/ 2), an iso spin

dou blet. 

Sym bolic ally , we wri te

      3 ⊗ 2  =  4 ⊕ 2.

(Th is is the  rul e for  for ming the  pro duct (2I 3
(1)  + 1)⊗(2I 3

(2)  + 1). 

13

GRO UPS A ND TH E STR UCTUR E OF MATTE R

13. 1  Str angen ess

In the  ear ly 195 0’s, our  und ersta nding  of the  ult imate  str uctur e of

mat ter see med to be com plete .  We req uired  neu trons , pro tons,  ele ctron s

and  neu trino s, and  mes ons and  pho tons.   Our  opt imism  was  sho rt-li ved.

By 195 3, exc ited sta tes of the nuc leons , and  mor e mas sive mes ons, had 

bee n dis cover ed.  Som e of the  new  par ticle s had  com plete ly une xpect ed

pro perti es; for  exa mple,  in the  int eract ion bet ween pro tons and  π-m esons 

(pi ons) the  fol lowin g dec ay mod e was  obs erved :
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                     Pro ton (p+)  
                                                       Sig ma (∑+)                       Pio n
                                                                                              (π0 )

    ❊       Kao n (K+)               ❊ 
                         Pio n

         (π+)

                     Pio n (π+)
                                          ⇑                                            ⇑  

Ini tial int eract ion                              Fin al dec ay
        las ts ~10 -23  sec onds                       tak es ~10 -10  sec onds

       (Str ong for ce act ing)                     (Wea k for ce act ing)

Gel l-Man n, and  ind epend ently  Nis hijim a, pro posed  tha t the  kao ns (he avy

mes ons) wer e end owed wit h a new  int rinsi c pro perty  not  aff ected  by the 

str ong for ce.  Gel l-Man n cal led thi s pro perty  “st range ness” .  Str angen ess

is  con serve d in the  str ong int eract ions but  cha nges in the  wea k

int eract ions.   The  Gel l-Man n - Nis hijim a int erpre tatio n of the  str angen ess-

cha nging  inv olved  in the  pro ton-p ion int eract ion is

       p+ (S = 0)        ∑+ (S = –1) 
   π0 (S = 0)

  ❊          K+ (S = +1)  ❊
   π+ (S = 0)

        π+ (S = 0)

   ⇑   ⇑  
       ∆S = 0        ∆S = 1

In the  str ong par t of the  int eract ion, the re is no cha nge in the  num ber

def ining  the  str angen ess, whe reas in the  wea k par t, the  str angen ess cha nges

by one  uni t.  Hav ing def ined the  val ues of S for  the  par ticle s in thi s
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int eract ion, the y are  def ined for ever.   All  sub seque nt exp erime nts inv olvin g

the se obj ects hav e bee n con siste nt wit h the  ori ginal  ass ignme nts.  

13. 2  Par ticle  pat terns 

In 196 1, Gel l-Man n, and  ind epend ently  Ne’ eman,  int roduc ed a

sch eme tha t cla ssifi ed the  str ongly  int eract ing par ticle s int o fam ily gro ups.

The y wer e con cerne d wit h the  inc lusio n of “st range ness”  in the ir the ory,

and  the refor e the y stu died the  arr angem ents of par ticle s in an abs tract 

spa ce def ined by the ir ele ctric  cha rge and  str angen ess.  The  com mon

fea ture of eac h fam ily was  cho sen to be the ir int rinsi c spi n; the  fam ily of

spi n-1/2  bar yons (st rongl y int eract ing par ticle s) has  eig ht mem bers:  n0, p+

,∑±  ,∑0 ,Ξ– ,Ξ0 , and  Λ0 .  The ir str angen ess qua ntum num bers are : S = 0:

n0, p+ ; S = –1:  ∑± ,∑0 , and  Λ0 ; and  S = –2:  Ξ0,–  .  If the  posi tions  of the se

eig ht par ticle s are  giv en in cha rge-s trang eness  spa ce, a rem arkab le pat tern

eme rges: 

                Str angen ess
        n0                                  p+                       ⇓

         0

                                                      Λ0

           ∑–                                                                ∑+         –1
                                             ∑0

                                                                             Cha rge  +1    

        –2
                                Ξ–                            Ξ0

       Cha rge  –1                           Cha rge 0      
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The re are  two  par ticle s at the  cen ter, eac h wit h zer o cha rge and  zer o

str angen ess; the y are  the  ∑0 and  the  Λ0.  (Th ey hav e dif feren t res t mas ses). 

The y stu died the  str uctur e of oth er fam ilies .  A par ticul arly

imp ortan t set  of par ticle s con sists  of all  bar yons wit h spi n 3/2 .  At the  tim e,

the re wer e nin e kno wn par ticle s in thi s cat egory :  ∆0, ∆±1, ∆+2, ∑*0, ∑*±1,

Ξ0, and  Ξ-1 .  The y hav e the  fol lowin g pat tern in cha rge-s trang eness  spa ce:

        Cha rge: –1                0               +1               +2      Str angen ess
⇓

     0
         ∆-         ∆0          ∆+            ∆++

    –1
     ∑*–            ∑*0              ∑+

    –2
     Ξ*–              Ξ*0

    –3
      Ω–

The  sym metry  pat tern of the  fam ily of spi n-3 /2 bar yons,  sho wn by the 

kno wn nin e obj ects was  suf ficie ntly com pelli ng for  Gel l-Man n, in 196 2, to

sug gest tha t a ten th mem ber of the  fam ily sho uld exi st.  Fur therm ore, if

the  sym metry  has  a phy sical  bas is, the  ten th mem ber sho uld hav e spi n-3/2 ,

cha rge –1,  str angen ess –3,  and  its  mas s sho uld be abo ut 150 MeV gre ater

tha n the  mas s of the  Ξ0 par ticle .  Two  yea rs aft er thi s sug gesti on, the  ten th

mem ber of the  fam ily was  ide ntifi ed in hig h ene rgy par ticle  col lisio ns; it
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dec ayed via  wea k int eract ions,  and  pos ses sed the  pre dicte d pro perti es.

Thi s cou ld not  hav e bee n by cha nce.  The  dis cover y of the  Ω– par ticle  was 

cru cial in hel ping to est ablis h the  con cept of the  Gel l-Man n – Ne’ eman

sym metry  mod el.  

In add ition  to the  sym metri es of bar yons,  gro uped by the ir spi ns, the 

mod el was  use d to obt ain sym metri es of mes ons, als o gro uped by the ir

spi ns.  

13. 3  The  spe cial uni tary gro up SU( 3) and  par ticle  str uctur e

Sev eral yea rs bef ore the  wor k of Gel l-Man n and  Ne’ eman,  Sak ata

had  att empte d to bui ld-up  the  kno wn par ticl es fro m {ne utron - pro ton-

lam bda0} tri plets .  The  lam bda par ticle  was  req uired  to “ca rry the 

str angen ess”.   Alt hough  the  mod el was  sho wn not  to be val id, Ike da et al. 

(19 59) int roduc ed an imp ortan t mat hemat ical ana lysis  of the  thr ee-st ate

sys tem tha t inv olved  the  gro up SU( 3).  The  not ion tha t an und erlyi ng

gro up str uctur e of ele menta ry par ticle s mig ht exi st was  pop ular in the 

ear ly 196 0’s.  (Sp ecial  Uni tary Gro ups wer e use d by J. P. Ell iott in the 

lat e1950 ’s to des cribe  sym metry  pro perti es of lig ht nuc lei). 

The  pro blem fac ing Par ticle  Phy sicis ts, at the  tim e, was  to fin d the 

app ropri ate gro up and  its  fun damen tal rep resen tatio n, and  to con struc t

hig her-d imens ional  rep resen tatio ns tha t wou ld acc ount for  the  wid e var iety

of sym metri es obs erved  in cha rge-s trang eness  spa ce.  We hav e see n tha t

the  cha rge of a par ticle  can  be wri tten in ter ms of its  iso spin,  a con cept tha t

has  its  ori gin in the  cha rge-i ndepe ndenc e of the  nuc leon- nucle on for ce.
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Whe n app ropri ate, we sha ll dis cuss the  sym metry  pro perti es of par ticle s in

iso spin- stran genes s spa ce.   

Pre vious ly, we dis cusse d the  pro perti es of the  Lie  gro up SU( 2).  It is

a gro up cha racte rized  by its  thr ee gen erato rs, the  Pau li spi n mat rices .

Two -stat e sys tems,  suc h as the  ele ctron  wit h its  qua ntize d spi n-up and  spi n-

dow n, and  the  iso spin sta tes of nuc leons  and  nuc lei, can  be tre ated

qua ntita tivel y usi ng thi s gro up.  The  sym metri es of nuc leon and  mes on

fam ilies  dis cover ed by Gel l-Man n and  Ne’ eman,  imp lied an und erlyi ng

str uctur e of nuc leons  and  mes ons.  It cou ld not  be a str uctur e sim ply

ass ociat ed wit h a two -stat e sys tem bec ause the  obs erved  par ticle s wer e

end owed not  onl y wit h pos itive , neg ative , and  zer o cha rge but  als o wit h

str angen ess.  A thr ee-st ate sys tem was  the refor e con sider ed nec essar y, at

the  ver y lea st; the  mos t pro misin g can didat e was  the  gro up SU( 3).  We

sha ll dis cuss the  inf inite simal  for m of thi s gro up, and  we sha ll fin d a

sui table  set  of gen erato rs.

13. 3.1  The  alg ebra of SU( 3)  

The  gro up of spe cial uni tary tra nsfor matio ns in a 3-d imens ional 

com plex spa ce is def ined as

     SU( 3) ≡ {U3×3 : UU† = I, det U = +1,  uij ∈ C}.

The  inf inite simal  for m of SU( 3) is

    SU( 3)inf  = I + iδαj j/2 , j = 1 to 8.

(Th ere are  n2 − 1 = 8 gen erato rs).
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The  qua ntiti es δαj are  rea l and  inf inite simal , and  the  3×3 mat rices  j are 

the  lin early  ind epend ent gen erato rs of the  gro up.  The  rep eated  ind ex, j,

mea ns tha t a sum  ove r j is tak en.

The  def ining  pro perti es of the  gro up res trict  the  for m of the 

gen erato rs.  For  exa mple,  the  uni tary con ditio n is

        UU† = (I + iδαj j/2) (I – iδαj
†
j/2) 

      = I – iδαj j
†/2 + iδαj j/2 to 1st -orde r,

      = I if j = j
†.

The  gen erato rs mus t be her mitia n.

The  det ermin antal  con ditio n is

          det  = +1;  and  the refor e Tr j = 0.

The  gen erato rs mus t be tra celes s.

The  fin ite for m of U is obt ained  by exp onent iatio n:

            U = exp {iαj j/2} .

We can  fin d a sui table  set  of 8 gen erato rs by ext endin g the  met hod

use d in our  dis cussi on of iso spin,  thu s:

Let  thr ee fun damen tal sta tes of the  sys tem be cho sen in the  simpl est

way , nam ely:

                1            0                   0

        u =   0  , v =   1   ,  and  w =  0   .

       0            0                   1

If we wis h to tra nsfor m v → u, we can  do so by def ining  the  ope rator  A+:
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      0   1   0    0       1   

       A+ v = u,    0   0   0    1  =   0  .

      0   0   0    0       0   

We can  int roduc e oth er ope rator s tha t tra nsfor m the  sta tes in pai rs, thu s

                   0   0   0

                    A– = 1   0   0   ,

                   0   0   0

            0   0   0             0   0   0   

 B+  =   0   0   1  , B–  =   0   0   0 ,

   0   0   0             0   1   0  

   0   0   0             0   0   1  

C+  =    0   0   0  , C–  =  0   0   0  .

   1   0   0             0   0   0  

The se mat rices  are  sin gular  and  non -herm itian .  In the  dis cussi on of iso spin

and  the  gro up SU( 2), the  non -sing ular,  tra celes s, her mitia n mat rices  1, and 

2 are  for med fro m the  rai sin g and  low ering  ope rator s ± mat rices  by

int roduc ing the  com plex lin ear com binat ions

    1  =  + + –  = 1 and  2  =  i( 1  –  2)  = 2.

The  gen erato rs of SU( 3) are  for med fro m the  ope rator s A±, B±, C± by

con struc ting com plex lin ear com binat ions.   For  exa mple: 

the  iso spin ope rator  1 =  1  =  + + –, a gen erato r of SU( 2) bec omes



128

       0     

                                   1     0   =  A+ + A– ≡ 1, a gen erato r of SU( 3).

       0   0   0  

Con tinui ng in thi s way , we obt ain

                      A+  =  1/2  +  i 2/2 ,

whe re

                               0
      2

             2  =           0   ,
 

                      0   0   0

and 

C+ + C–  =  4,       C+ – C–  =  –i 5,

B+ + B–  =  6  and  B + – B–  =  i 7 .

The  rem ainin g gen erato rs, 3 and  8 are  tra celes s, dia gonal , 3×3 mat rices :

             0               1   0   0   

   3  =     3    0  ,  8  =   0   1   0   .

            0   0   0               0    0  −2  

The  set  of mat rices  { 1, ... .. 8} are  cal led the  Gel l-Man n mat rices ,

int roduc ed in 196 1.  The y are  nor maliz ed so tha t

 Tr( j k)  =  2δjk.

The  nor maliz ed for m of 8 is the refor e

                     1    0   0  

          8  =  (1/ √3)   0    1   0   .

                      0   0  –2  
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If we put  Fi = i/2.  we fin d

 A± = F1 ± iF2 ,

 B± = F6 ± iF7,

and 

 C± = F4 + iF5 .

Let  A3 = F3, B3 = –F3/2 + (√3 /4)F8 , and  C3 = (–1 /2)F3 − (√3 /4)F8., so tha t

  A3 + B3 + C3 = 0.

The  las t con ditio n mea ns tha t onl y eig ht of the  nin e ope rator s are 

ind epend ent.

The  gen erato rs of the  gro up are  rea dily sho wn to obe y the  Lie 

com mutat ion rel ation s

     [Fi, Fj] = ifijk Fk , i,j ,k = 1 to 8.

whe re the  qua ntiti es fijk  are  the  non -zero  str uctur e con stant s of the  gro up;

the y are  fou nd to obe y

   f ijk  = –fjik ,

 and  the  Jac obi ide ntity .

The  com mutat ion rel ation s [Fi, Fj] can  be wri tten in ter ms of the  ope rator s

A±, ... Some typ ical res ults are 

  [A+, A-] = 2A3, [A+, A3] = -A+,  [A-, A3] = +A-,

  [A3, B3]   = 0,   [A3, C3]  = 0,    [B3, C3] = 0

  [B+, B-]  = 2B3, [B+, B3]  = -B-,  [B-, B3] = +B-, etc .

The  two  dia gonal  ope rator s com mute: 



130

   [F3, F8] = 0 .

Now , F1, F2, and  F3 con tain the  2×2 iso spin ope rator s (Pa uli mat rices ),

eac h wit h zer os in the  thi rd row  and  col umn; the y obe y the  com mutat ion

rel ation s of iso spin.   We the refor e mak e the  ide ntifi catio ns

  F1 = I1, F2 = I2, and  F3 = I3

whe re the  Ij’s are  the  com ponen ts of the  iso spin. 

Par ticle s tha t exp erien ce the  str ong nuc lear int era ction  are  cal led

had rons; the y are  sep arate d int o two  set s: the  bar yons, wit h hal f-int eger

spi ns, and  the  mes ons wit h zer o or int eger spi ns.  Par ticle s tha t do not 

exp erien ce the  str ong int eract ion are  cal led lep tons.  In ord er to qua ntify 

the  dif feren ce bet ween bar yons and  lep tons,  it has  bee n fou nd nec essar y to

int roduc e the  bar yon num ber B = +1 to den ote a bar yon, B = –1 to

den ote an ant i-bar yon and  B = 0 for  all  oth er par ticle s.  Lep tons are 

cha racte rized  by the  lep ton num ber L = +1,  ant i-lep tons are  ass igned  L =

–1,  and  all  oth er par ticle s are  ass igned  L = 0.  It is a pre sent- day fac t,

bas ed upo n num erous  obs ervat ions,  tha t the  tot al bar yon and  lep ton

num ber in any  int eract ion is con serve d.  For  exa mple,  in the  dec ay of the 

fre e neu tron we fin d

            n0 = p+ + e– + νe
0

             B = +1 = +1 + 0  + 0

             L =  0  =  0  + 1 + (–1 ) .
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The  fun damen tal sym metri es in Nat ure res ponsi ble for  the se con serva tion

law s are  not  kno wn at thi s tim e.  The se con serva tion law s may , in all 

lik eliho od, be bro ken.

In dis cussi ng the  pat terns  of bar yon fam ilies  in cha rge-s trang eness 

spa ce, we wis h to inc orpor ate the  fac t tha t we are  dea ling wit h bar yons

tha t int eract  via  the  str ong nuc lear for ce in whi ch iso spin and  str angen ess

are  con serve d.  We the refor e cho ose to des cribe  the ir pat terns  in iso spin- 

hyp ercha rge spa ce, whe re the  hyp ercha rge Y is def ined to inc lude bot h the 

str angen ess and  the  bar yon att ribut e of the  par ticle  in an add itive  way :

           Y = B + S.

The  dia gonal  ope rator  F8  is there fore ass umed to be dir ectly  ass ociat ed

wit h the  hyp ercha rge ope rator ,

  F8 = (√3 /2)Y.

Bec ause I3 and  Y com mute,  sta tes can  be cho sen tha t are 

sim ultan eous eig ensta tes of the  ope rator s F3 and  F8.  Sin ce no oth er SU( 3)

ope rator s com mute wit h I3 and  Y, no oth er add itive  qua ntum num bers are 

ass ociat ed wit h the  SU( 3) sym metry .  The  ope rator s F4,.. .F8 are  con sider ed

to be new  con stant s-of- the-m otion  of the  str ong int eract ion ham ilton ian.

13. 4 Irr educi ble rep resen tatio ns of SU( 3)

In an ear lier dis cussi on of the  irr educi ble rep resen tatio ns of SU( 2),

we fou nd tha t the  com mutat ion rel ation s of the  gen erato rs of the  gro up

wer e sat isfie d not  onl y by the  fun damen tal 2×2 mat rices  but  als o by
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mat rices  of hig her dim ensio n [(2 J + 1) ⊗ (2J  + 1)] , whe re J can  hav e the 

val ues 1/2 , 1, 3/2 , 2, ... .The J-v alues  cor respo nd to the  spi n of the  par ticle 

who se sta te is giv en by a spi nor (a col umn vec tor wit h spe cial

tra nsfor matio n pro perti es).  In the  2×2 rep resen tatio n, bot h cov arian t and 

con trava riant  spi nors are  all owed: 

i) cov arian t spi nors (wi th low er ind ices)  are  wri tten as 2-c ompon ent

col umns tha t tra nsfor m und er U ∈ SU( 2) as

       i´  =  Ui
j j ,

whe re

          a1  
           =        ,

          a2  

and 

ii) con trava riant  spi nors (wi th upp er ind ices)  are  wri tten as
 

2-c ompon ent row s tha t tra nsfor m as: 

           j´ =  i Ui
j †,

whe re

             =  (b1, b2).

The  co-  and  con tra-v arian t spi nors are  tra nsfor med wit h the  aid  of the  ant i-

sym metri c ten sors ij and  ij.  For  exa mple, 

             i = ij 
j

tra nsfor ms as a cov arian t spi nor wit h the  for m

             b2  
             i  =        .

            –b1  
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The  hig her-d imens ional  rep resen tatio ns are  bui lt up fro m the  fun damen tal

for m by tak ing ten sor pro ducts  of the  fun damen tal spi nors i , 
j , or i

and  by sym metri zing and  ant i-sym metri zing the  res ult.  We sta te, wit hout

pro of, the  the orem tha t is use d in thi s met hod:

whe n a ten sor pro duct of spi nors has  bee n bro ken dow n int o its sym metri c

and  ant i-sym metri c par ts, it has  bee n dec ompos ed int o irr educi ble

rep resen tatio ns of the  SU( n).  (Se e Wig ner’s  sta ndard  wor k for  the 

ori ginal  dis cussi on of the  met hod, and  de Swa rt in Rev . Mod . Phy s. 35,

(19 63) for  a det ailed  dis cussi on of ten sor ana lysis  in the  stu dy of the  irr eps

of SU( n))

As an exa mple,  we wri te the  ten sor pro duct of two  cov arian t spi nors

i and  j in the  fol lowin g way 

i⊗ j = i j = ( i j + j i)/2   +  ( i j − j i)/2 

The re are  fou r ele ments  ass ociat ed wit h the  pro duct (i, j can  hav e val ues 1

and  2). 

The  sym metri c par t of the  pro duct has  thr ee ind epend ent ele ments ,

and  tra nsfor ms as an obj ect tha t has  spi n J=1 .  (Th ere are  2J + 1 mem bers

of the  sym metri c set ).  The  ant i-sym metri c par t has  one  ele ment,  and 

the refor e tra nsfor ms as an obj ect wit h spi n J = 0.  Thi s res ult is fam iliar  in

the  the ory of ang ular mom entum  in Qua ntum Mec hanic s.  The  exp licit 

for ms of the  fou r ele ments  are :
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   J3 = +1:   1 1

        J = 1      J3 = 0  : (1/ √2)( 1 2 + 2 1)

            J3 = –1 : 2 1

and 

        J = 0       J3 = 0 : (1/ √2)( 1 2 – 2 1) .

Hig her-d imens ional  rep resen tatio ns are  bui lt up fro m the  ten sor pro ducts 

of cov arian t and  con trava riant  3-s pinor s,  and   res pecti vely.   The 

pro ducts  are  the n wri tten in ter ms of the ir sym metri c and  ant i-sym metri c

par ts in ord er to obt ain the  irr educi ble rep resen tatio ns.  For  exa mple,  the 

pro duct i
j, i,j  = 1,2 ,3, can  be wri tten

        i
j  =  ( i

j  −  (1/ 3)δi
j

k
k) + (1/ 3)δi

j
k

k ,

in whi ch the  tra ce has  bee n separ ated out .  The  tra ce is a zer o-ran k ten sor

wit h a sin gle com ponen t.  The  oth er ten sor is a tra celes s, sym metri c ten sor

wit h eig ht ind epend ent com ponen ts.  The  dec ompos ition  is wri tten

sym bolic ally as: 

    3 ⊗ 3  =  8 ⊕ 1.

We can  for m the  ten sor pro duct of two  cov arian t 3-s pinor s, i j as

fol lows: 

i j  =  (1/ 2)( i j + j i) + (1/ 2)( i j – j i), i,j  = 1,2 ,3.

Sym bolic ally,  we hav e

   3 ⊗ 3  =  6 ⊕ 3 ,

in whi ch the  sym metri c ten sor has  six  com ponen ts and  the  ant i-sym metri c

ten sor has  thr ee com ponent s.
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Oth er ten sor pro ducts  tha t wil l be of int erest  are 

       3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1 ,

and 

             8 ⊗ 8 = 27 ⊕ 10 ⊕ 10 ⊕ 8 ⊕ 8  ́⊕ 1 .

The  app earan ce of the  oct et “8”  in the   3 ⊗ 3 dec ompos ition  (re call

the  obs erved  oct et of spi n-1/2  bar yons) , and  the  dec uplet  “10 ” in the  tri ple

pro duct 3 ⊗ 3 ⊗ 3 dec ompos ition  (re call the  obs erved  dec uplet  of spi n-3/2 

bar yons) , was  of pri me imp ortan ce in the  dev elopm ent of the  gro up the ory

of “el ement ary” par ticle s.

13. 4.1  Wei ght dia grams 

Two  of the  Gel l-M ann mat rices , 3 and  8, are  dia gonal .  We can 

wri te the  eig enval ue equ ation s:

           3u = αuu, 3v = αvv, and  3w = αww,

 and 

            8u = βuu, 8v = βvv, and  8w = βww ,

 whe re αi and  βi are  the  eig enval ues.  

Let  a and  b be nor maliz ation  fac tors ass ociat ed wit h the  ope rator s 3

and  8, rep ectiv ely, so tha t

 a    0   0       b   0   0  
         3

N =   0  –a   0 , and  8
N=   0   b   0    .

 0    0   0                   0   0  –2b  

If

   u = [1,  0, 0],  v = [0,  1, 0],  and  w = [0,  0, 1] (co lumns ), we fin d

        3
Nu =  au ,    8

Nu = bu,
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        3
Nv = –av ,    8

Nv = bv ,

and 

        3
Nw = 0w ,   8 

Nw = –2b w.

The  wei ght vec tors are  for med fro m the  pai rs of eig enval ues:

[αu, βu] = [a,  b], 

[αv, βv] = [−a, b], 
and 

[αw, βw] = [0,  −2b] .

A wei ght dia gram is obt ained  by plo tting  the se vec tors in the  α–β

spa ce, thu s:

     β    
    2b    

     b              

    –2a        –a               a        2a         α
  −b         

 –2b       

Thi s wei ght dia gram for  the  fun damen tal “3”  rep resen tatio n of SU( 3) was 

wel l-kno wn to Mat hemat ician s at the  tim e of the  fir st use  of SU( 3)

sym metry  in Par ticle  Phy sics.   It was  to pla y a key  rol e in the  dev elopm ent

of the  qua rk mod el.

13. 5  The  3-q uark mod el of mat ter
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Alt hough  the  oct et and  dec uplet  pat terns  of had rons of a giv en spi n

and  par ity eme rge as irr educi ble rep resen tatio ns of the  gro up SU( 3),

maj or pro blems  rem ained  tha t res ulted  in a gre at dea l of sce ptici sm

con cerni ng the  val idity  of the  SU( 3) mod el of fun damen tal par ticle s.  The 

mos t pre ssing  pro blem was : why  are  the re no kno wn par ticle s ass ociat ed

wit h the  fun damen tal tri plets  3, 3 of SU( 3) tha t exh ibit the  sym metry  of

the  wei ght dia gram dis cusse d in the  las t sec tion?   In 196 4, Gel l-Man n, and 

ind epend ently , Zwe ig, pro posed  tha t thr ee fun damen tal ent ities  do exi st

tha t cor respo nd to the  bas e sta tes of SU( 3), and  tha t the y for m bou nd

sta tes of the  had rons.   Tha t suc h ent ities  hav e not  bee n obs erved  in the 

fre e sta te is rel ated to the ir eno rmous  bin ding ene rgy.  The  thr ee ent ities 

wer e cal led qua rks by Gel l-Man n, and  ace s by Zwe ig.  The  Gel l-Man n

ter m has  sur vived .  The  ant i-qua rks are  ass ociat ed wit h the  con jugat e 3

rep resen tatio n.  The  thr ee qua rks, den oted by u, d, and  s (u and  d for  the 

up-  and  dow n-iso spin sta tes, and  s for  str angen ess) hav e hig hly unu sual

pro perti es; the y are 

Lab el B Y I I3 Q= I3 +Y/ 2  S = Y − B

   u         1/3     1/3      1/2    +1/ 2        +2/ 3             0         

   d         1/3     1/3      1/2     –1/ 2       –1/ 3              0            

   s         1/3    –2/ 3      0        0         –1/ 3           –1     

   s       –1/ 3     2/3       0        0         +1/ 3           +1       

   d       –1/ 3    –1/ 3    1/2     +1/ 2       +1/ 3             0        

   u       –1/ 3    –1/ 3    1/2     –1/ 2        –2/ 3             0         
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The  qua rks occ upy the  fol lowin g pos ition s in I3 - Y spa ce

        Y        Y
                                                                           s
               d                       u

                                                  I3                                                 
I3

                                                                  u                       d

                          s     
The se dia grams  hav e the  sam e rel ative  for ms as the  3 and  3 wei ght

dia grams  of SU( 3).

The  bar yons are  mad e up of qua rk tri plets , and  the  mes ons are  mad e

up of the  sim plest  pos sible  str uctur es, nam ely qua rk–an ti-qu ark pai rs.  The 

cov arian t and  con trava riant  3-s pinor s int roduc ed in the  pre vious  sec tion

are  now  giv en phy sical  sig nific ance: 

             = [u,  d, s],  a cov arian t col umn 3-s pinor ,

and 

             = (u,  d, s),  a con trava riant  row  3-s pinor .

whe re u = [1,  0, 0],  d = [0,  1, 0],  and  s = [0,  0, 1] rep resen t the  uni tary

sym metry  par t of the  tot al wav efunc tions  of the  thr ee qua rks.

The  for mal ope rator s A±, B±, and  C±, int roduc ed in sec tion 13. 3.1,

are  now  vie wed as ope rator s tha t tra nsfor m one  fla vor (ty pe)of  qua rk int o

ano ther fla vor (th ey are  shi ft ope rator s):

        A± ≡ I±(I3)    → I3 ± 1 ,
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        B± ≡ U±(U3) → U3 ± 1, cal led the  U-s pin ope rator ,

and 

        C± ≡ V±(V3) → V3 ± 1, cal led the  V-s pin ope rator .

Exp licit ly, we hav e

         I+(–1 /2) →  1/2  : d → u

         I–(+1 /2) → –1/ 2 : u → d

        U+(–1 /2) →   1/2  : s → d

        U–(+1 /2) → –1/ 2 : d → s

        V+(–1 /2) →   1/2  : u → s

and 

        V–(+1 /2) →  -1/ 2 : s → u.

The  qua rks can  be cha racte rized  by the  thr ee qua ntum num bers I3, U3, V3.

The ir pos ition s in the  I3-U3-V3 - spa ce aga in sho w the  und erlyi ng

sym metry :

                               U3                          −V3

                                  +1/ 2

            d(−1/2 , 1/2 , 0)                                          u(1 /2, 0, −1/2 )

                     −I3       −1/2                                +1/ 2            I3

                                   +1/ 2

                                                        s(0 , −1/2 , 1/2 )
                                  V3            −Y            -U3    
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The  mem bers of the  oct et of mes ons wit h JP = 0– are  for med fro m qq- pairs 

tha t bel ong to the  fun damen tal 3, 3 rep resen tatio n of the  qua rks.  The  π0

and  η0 mes ons are  lin ear com binat ions of the  qq sta tes, thu s

 K0  ds              Y                   K+ us   

             s

 d                               u

π–  du                       π0                            π+   ud  

       −1      η0                  +1      I3

 u                               d
    s      

   K–  su                                K0  sd   

The  non et for med fro m the  ten sor pro duct  3 ⊗ 3  is spl it int o an oct et

tha t is eve n und er the  lab el exc hange  of two  par ticle s, and  a sin glet tha t is

odd  und er lab el exc hange :

     3 ⊗ 3  =  8 ⊕ 1

whe re the  “1”  is

           η0´ = (1/ √3)(u u + dd + ss) ,

 and  the  two  mem bers of the  oct et at the  cen ter are :

   π0 = (1/ √2)(u u – dd)  and  η0 = (1/ √6)(u u + dd − 2ss ).

The  act ion of I– on π+ is to tra nsfor m it int o a π0.  Thi s ope ratio n has  the 

fol lowin g mea ning in ter ms of I– act ing on the  ten sor pro duct,  u ⊗ d:
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          I–(u ⊗ d) ≡ (I–u) ⊗ d + u ⊗ (I–d)  (c. f. der ivati ve rul e)
                                 ↓           ↓                     ↓

  I– ( π+ )  =   d   ⊗  d + u  ⊗ u  

              →  π0    
Omi tting  the  ten sor pro duct sig n, nor maliz ing the  amp litud es, and  choo sing

the  pha ses in the  gen erall y acc epted  way , we hav e:

π0 = (1/ √2)(u u – dd) .

The  sin glet η0´ is sai d to be ort hogon al to π0 and  η0 at the  ori gin.

If the  sym metry  of the  oct et wer e exa ct, the  eig ht mem bers of the 

oct et wou ld hav e the  sam e mas s.  Thi s is not  qui te the  cas e; the  sym metry 

is bro ken by the  dif feren ce in eff ectiv e mas s bet ween the  u- and  d-q uark

(es senti ally the  sam e eff ectiv e mas ses: ~ 300  MeV /c2) and  the  s-q uark

(ef fecti ve mas s ~ 500  MeV /c2).  (It  sho uld be not ed tha t the  eff ectiv e

mas ses of the  qua rks, der ived fro m the  mas s dif feren ces of had ron-p airs,  is

not  the  sam e as the  “cu rrent -quar k” mas ses tha t app ear in the 

fun damen tal the ory.  The  dis crepa ncy bet ween the  eff ectiv e mas ses and  the 

fun damen tal mas ses is not  ful ly und ersto od at thi s tim e).

The  dec ompos ition  of 3 ⊗ 3 ⊗ 3 is

         3 ⊗ 3 ⊗ 3 = (6 ⊕ 3) ⊗ 3

                        =  10 ⊕ 8 ⊕ 8´ ⊕ 1

in whi ch the  sta tes of the  10 are  sym metri c, the  1 is ant isymm etric , and  the 

8, 8  ́ sta tes are  of mix ed sym metry .  The  dec uplet  tha t app ears in thi s

dec ompos ition  is ass ociat ed wit h the  obs erved  dec uplet  of spi n-3/2  bar yons. 

In ter ms of the  thr ee fun damen tal qua rks — u, d, and  s, the  mak e -up  of
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the  ind ividu al mem bers of the  dec uplet  is sho wn sch emati cally  in the 

fol lowin g dia gram: 

     ddd          ~ dud            ~ uud           uuu 

        ~ dds           ~ dus           ~ uus 

         ~ sds           ~ sus 

                     sss 

The  pre cise mak e-up of eac h sta te, lab elled  by (Y,  I, I3,) is giv en in the 

fol lowin g tab le:

(1,  3/2 , +3/ 2)  =            uuu (++ )

(1,  3/2 , +1/ 2)  =   (1/ √3)(u du + duu  + uud )
(1,  3/2 , –1/ 2)  =   (1/ √3)(d du + udd  + dud )
(1,  3/2 , –3/ 2)  =            ddd (–) 

(0,  1, +1)        =   (1/ √3)(u su + suu  + uus )
(0,  1,   0)       =   (1/ √6)(u ds + dsu  + sud  + dus  + sdu  + usd )
(0,  1, –1)        =   (1/ √3)(d sd + sdd  + dds )

       (–1 , 1/2 , +1/ 2)  =   (1/ √3)(s su + uss  + sus )
       (–1 , 1/2 , –1/ 2)  =   (1/ √3)(s sd + dss  + sds )

(−2, 0, 0)       =             sss (–) 

The  gen eral the ory of the  per mutat ion gro up of n ent ities , and  its 

rep resen tatio ns, is out side the  sco pe of thi s int roduc tion.   The  use  of the 

You ng tab leaux  in obt ainin g the  mix ed sym metry  sta tes is tre ated in

Ham ermes h (19 62).  

The  cha rges of the  ∆++, ∆–, and  Ω–  par ticle s fix  the  fra ction al val ues

of the  qua rks, nam ely
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    qua rk fla vor      cha rge (in  uni ts of the  ele ctron  cha rge)

             u              +2/ 3  

             d              –1/ 3  

             s              –1/ 3  

The  cha rges of the  ant i-qua rks are  opp osite  in sig n to the se val ues.

Ext ensiv e rev iews of the  3-q uark mod el and  its  app licat ion to the 

phy sics of the  low -ener gy par t of the  had ron spe ctrum  can  be fou nd in

Gas iorow icz (19 66) and  Gib son and  Pol lard (19 76).

13. 6  The  nee d for  a new  qua ntum num ber: hid den col or

 Imm ediat ely aft er the  int roduc tion of the  3-q uark mod el by      

Gel l-Man n and  Zwe ig, it was  rec ogniz ed tha t the  mod el was  not  con siste nt

wit h the  ext ended  Pau li pri ncipl e whe n app lied to bou nd sta tes of thr ee

qua rks.  For  exa mple,  the  str uctur e of the  spi n-3/2  ∆+ sta te is suc h tha t, if

eac h qua rk is ass igned  a spi n sq = 1/2 , the  thr ee spi ns mus t be ali gned ↑↑↑ 

to giv e a net  spi n of 3/2 .  (It  is ass umed tha t the  rel ative  orb ital ang ular

mom entum  of the  qua rks in the  ∆+ is zer o (a sym metri c s-s tate)  — a

rea sonab le ass umpti on to mak e, as it cor respo nds to min imum kin etic

ene rgy, and  the refor e to a sta te of low est tot al ene rgy).   The  qua rks are 

fer mions , and  the refor e the y mus t obe y the  gen erali zed Pau li Pri ncipl e;

the y can not exi st in a com plete ly ali gned spi n sta te whe n the y are  in an s-

sta te tha t is sym metri c und er par ticle  (qu ark) exc hange .  The  uni tary spi n

com ponen t of the  tot al wav efunc tion mus t be ant i-sym metri c.  Gre enber g

(19 64) pro posed  tha t a new  deg ree of fre edom mus t be ass igned  to the 
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qua rks if the  Pau li Pri ncipl e is not  to be vio lated .  The  new  pro perty  was 

lat er cal led “co lor”,  a pro perty  wit h pro found  con seque nces.   A qua rk

wit h a cer tain fla vor pos sesse s col or (re d, blu e, gre en, say ) tha t

cor respo nds to the  tri plet repr esent ation  of ano ther for m of SU( 3) —

nam ely SU( 3)C, whe re the  sub scrip t C dif feren tiate s the  gro up fro m tha t

int roduc ed by Gel l-Man n and  Zwe ig — the  fla vor gro up SU( 3)F.  The  ant i-

qua rks (th at pos sess ant i-col or) hav e a tri plet rep resen tatio n in SU( 3)C tha t

is the  con jugat e rep resen tatio n (th e 3).  Alt hough  the  SU( 3)F sym metry  is

kno wn not  to be exa ct, we hav e evi dence  tha t the  SU( 3)C sym metry  is an

exa ct sym metry  of Nat ure.  Bar yons and  mes ons are  fou nd to be col orles s;

the  col or sin glet of a bar yon occur s in the  dec ompos ition 

  SU( 3)C = 3 ⊗ 3 ⊗ 3 = 10 + 8 + 8´ + 1 .

The  mes on sin glets  con sist of lin ear com binat ions of the  for m

1 = (RR  + BB + GG) /√3 .

Alt hough  the  had rons are  col orles s, cer tain obs ervab le qua ntiti es are 

dir ectly  rel ated to the  num ber of col ors in the  mod el.  For  exa mple,  the 

pur ely ele ctrom agnet ic dec ay of the  neu tral pio n, π0, int o two  pho tons

          π0 = γ + γ,

has  a lif etime  tha t is fou nd to be clo sely pro porti onl to the  squ are of the 

num ber of col ors. (Ad ler (19 70) giv es Γ = h/τ = 1(e V) (nu mber of col ors)2

The  mea surem ents of the  lif etime  giv e a val ue of  Γ ~8 eV,  con siste nt wit h

Ncol s = 3.  Sin ce the se ear ly mea surem ents,  ref ined exp erime nts hav e
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dem onstr ated tha t the re are  thr ee, and  onl y thr ee, col ors ass ociat ed wit h

the  qua rks.

In stu dies of ele ctron -posi tron int eract ions in the  GeV -regi on, the 

rat io of cro ss sec tions :

           R = σ(e+e– → had rons) /σ(e+e– → µ+µ–)

is fou nd to dep end lin early  on the  num ber of col ors.  Goo d agr eemen t

bet ween the  the oreti cal model  and  the  mea sured  val ue of R, ove r a wid e

ran ge of ene rgy, is obt ained  for  thr ee col ors.  

The  col or att ribut e of the  qua rks has  bee n res ponsi ble for  the 

dev elopm ent of a the ory of the  str ongly  int eract ing par ticle s, cal led

qua ntum chr omody namic s.  It is a fie ld the ory in whi ch the  qua rks are 

gen erato rs of a new  typ e of fie ld — the  col or fie ld.  The  med iator s of the 

fie ld are  cal led glu ons; the y pos sess col or, the  att ribut e of the  sou rce of the 

fie ld.  Con seque ntly,  the y can  int eract  wit h eac h oth er throu gh the  col or

fie ld.  Thi s is a fie ld qui te unl ike the  ele ctrod ynami c fie ld of cla ssica l

ele ctrom agnet ism, in whi ch the  fie ld qua nta do not  car ry the  att ribut e of

the  sou rce of the  fie ld, nam ely ele ctric  cha rge.  The  pho tons,  the refor e, do

not  int eract  wit h eac h oth er.  

The  glu ons tra nsfor m a qua rk of a par ticul ar col or int o a qua rk of a

dif feren t col or.  For  exa mple,  in the  int eract ion bet ween a red  qua rk and  a

blu e qua rk, the  col ors are  exc hange d.  Thi s req uires  tha t the  exc hange d

glu on car ry col or and ant i-col or, as sho wn:
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qb                                     qr   

                                             glu on, grb car ries red  and  ant i-blu e:
      the  col or lin es are  con tinuo us.

                 qr                            qb   

Thr ee dif feren t col ors per mit nin e dif feren t way s of cou pling  qua rks

and  glu ons.  Thr ee of the se are  red -red,  blu e-blu e, and  gre en-gr een tha t do

not  cha nge the  col ors.  A lin ear com binat ion ~(R →R + B→B + G→G) is

sym metri c in the  col or lab els, and  thi s com binat ion is the  sin glet sta te of

the  gro up SU( 3)C.  Eig ht glu ons, eac h wit h two  col or ind ices,  are  the refor e

req uired  in the  3-c olor the ory of qua rks.  

13. 7  Mor e mas sive qua rks

In 197 4, the  res ults of two  ind epend ent exp erime nts, one  a stu dy of

the  rea ction  p + Be → e+ + e– .. (Ti ng et al. ) and  the  oth er a stu dy of       

e+ + e– → had rons ..( Richt er et al)  — sho wed the  pre sence  of a sha rp

res onanc e at a cen ter-o f-mas s ene rgy of 3.1  GeV .  The  lif etime  of the 

res onant  sta te was  fou nd to be ~10–20  sec onds — mor e tha n 103 sec onds

lon ger tha n exp ected  for  a sta te for med in the  str ong int eract ion.  The 

res onant  sta te is cal led the  J/ψ.  It was  qui ckly rea lized  tha t the  sta te

cor respo nds to the  gro und sta te of a new  qua rk–an ti-qu ark sys tem, a

bou nd sta te cc,  whe re c is a fou rth, mas sive,  qua rk end owed wit h one  uni t
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of a new  qua ntum num ber c, cal led “ch arm”.   The  qua ntum num bers

ass igned  to the  c-q uark are 

                JP = 1/2 +, c = 1, Q/e  = +2/ 3, and  B = 1/3 .

 Sou nd the oreti cal arg ument s for  a fou rth qua rk, car rying  a new 

qua ntum num ber, had  bee n put  for ward sev eral yea rs bef ore the 

exp erime ntal obs ervat ion of the  J/ψ sta te.  Sin ce 197 4, a com plex set  of

sta tes of the  “ch armon ium” sys tem has  bee n obs erved , and  the ir dec ay

pro perti es stu died.   Det ailed  com paris ons hav e bee n mad e wit h

sop histi cated  the oreti cal mod els of the  sys tem.

The  inc lusio n of a cha rmed qua rk in the  set  of qua rks mea ns tha t the 

gro up SU( 4)F mus t be use d in pla ce of the  ori ginal  Gel l-Man n-Zwe ig gro up

SU( 3)F.  Alt hough  the  SU( 4)F sym metry  is bad ly bro ken bec ause the 

eff ectiv e mas s of the  cha rmed qua rk is ~ 1.8  GeV /c2, som e use ful

app licat ions hav e bee n mad e usi ng the  mod el.  The  fun damen tal

rep resen tatio ns are 

       [u,  d, s, c],  a cov arian t col umn spi nor,

 and 

       (u,  d, s, c),  a con trava riant  row  spi nor.

The  irr eps are  con struc ted in a way  tha t is ana logou s to tha t use d in

SU( 3)F, nam ely, by fin ding the  sym metri c and  ant i-sym metri c

dec ompos ition s of the  var ious ten sor pro ducts .  The  mos t use ful are :

      4 ⊗ 4 = 15 ⊕ 1,

      4 ⊗ 4 = 10 ⊕ 6,
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         4 ⊗ 4 ⊗ 4 = 20sym  ⊕ 20mix  ⊕ 20´mix  ⊕ 4ant i,

 and 

   15 ⊗ 15 = 1 ⊕ 15sym  ⊕ 15ant i ⊕ 20sym  ⊕ 45 ⊕ 45 ⊕ 84.

The  “15 ”  inc ludes  the  non -char med (JP = 0– ) mes ons and  the  fol lowin g

cha rmed mes ons:

      D0 = cu,  D0 = cu,  mas s = 186 3MeV/ c2 ,

      D+ = cd,  D– = cd,  mas s = 186 8 MeV /c2,

       F+ = cs,  F– = cs,   mas s = 2.0 4 MeV /c2.

In ord er to dis cuss the  bar yons,  it is nec essar y to inc lude the  qua rk spi n,

and  the refor e the  gro up mus t be ext ended  to SU( 8)F.  Rel ative ly few 

bar yons hav e bee n stu died in det ail in thi s ext ended  fra mewor k.  

In 197 7, wel l-def ined res onant  sta tes wer e obs erved  at ene rgies  of

9.4 , 10. 01, and  10. 4 GeV , and  wer e int erpre ted as bou nd sta tes of ano ther

qua rk, the  “bo ttom”  qua rk, b, and  its  ant i-par tner,  the  b.  Mes ons can  be

for med tha t inc lude the  b-q uark,  thu s

      Bu = bu,  Bd
0 = bd,  Bs

0 = bs,  and  Bc = bc .

The  stu dy of the  wea k dec ay mod es of the se sta tes is cur rentl y fas hiona ble.

In 199 4, def initi ve evi dence  was  obta ined for  the  exi stenc e of a six th

qua rk, cal led the  “to p” qua rk, t.  It is a mas sive ent ity wit h a mas s alm ost

200  tim es the  mas s of the  pro ton!

We hav e see n tha t the  qua rks int eract  str ongly  via  glu on exc hange .

The y als o tak e par t in the  wea k int eract ion.  In an ear lier dis cussi on of
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iso spin,  the  gro up gen erato rs wer e int roduc ed by con sider ing the  β-de cay

of the  fre e neu tron: 

                    n0 → p+ + e– + ν0  .

We now  kno w tha t, at the  mic rosco pic lev el, thi s pro cess inv olves  the 

tra nsfor matio n of a d-q uark int o a u-q uark,  and  the  pro ducti on of the 

car rier of the  wea k for ce, the  mas sive W– par ticle .  The  W– bos on (sp in 1)

dec ays ins tantl y int o an ele ctron –anti -neut rino pai r, as sho wn:

      ν0      

 W – 1                   e–    

        d                                                                     u
          neu tron,  n0           d(– 1/3) → u(+ 2/3)                          pro ton, p+

        u                                                                     u

        d                                                                     d

The  car riers  of the  Wea k For ce, W± , Z0,  wer e fir st ide ntifi ed in p-p 

col lisio ns at hig h cen ter-o f-mas s ene rgy.  The  pro cesse s inv olve       

qua rk–an ti-qu ark int eract ions,  and  the  det ectio n of the  dec ay ele ctron s and 

pos itron s.
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   e+     e–   
        Z0           

      u(+ 2/3)            u (–2 /3)
ν0

       W+          e+

      u(+ 2/3)   d(+ 1/3)
       ν0         

      W–            e–     
      d(−1/3 )   u(−2/3 )

The  cha rge is con serve d at eac h ver tex.

The  car riers  hav e ver y lar ge mea sured  mas ses:

mas s W±  ~ 81 GeV /c2, and  mas s Z0 ~ 93 GeV /c2.

 (Re call tha t the  ran ge of a for ce ∝ 1/( mass of car rier) ; the  W and  Z mas ses

cor respo nd to a ver y sho rt ran ge,~1 0-18  m, for  the  Wea k For ce).

Any  qua ntita tive dis cussi on of cur rent wor k usi ng Gro up The ory to

tac kle Gra nd Uni fied The ories , req uires  a kno wledg e of Qua ntum Fie ld

The ory tha t is not  exp ected  of rea ders of thi s int roduc tory boo k.

14

LIE  GROU PS AN D THE  CONS ERVAT ION L AWS O F THE 

PHY SICAL  UNIV ERSE

14. 1  Poi sson and  Dir ac Bra ckets 

The  Poi sson Bra cket of two  dif feren tiabl e fun ction s

A(p 1, p2, ... pn, q1, q2, ... qn)

and 

B(p 1, p2, ... pn, q1, q2, ... qn)
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of two  set s of var iable s (p1, p2, ... pn) and  (q1, q2, ... qn) is def ined as

    {A,  B} ≡ ∑1
n (∂A /∂qi)(∂ B/∂pi) – (∂A /∂pi)(∂ B/∂qi) .

If A ≡ (pi, qi), a dyn amica l var iable , and 

   B ≡ H(pi, qi), the  ham ilton ian of a dyn amica l sys tem,

whe re pi is the  (ca nonic al) mom entum  and  qi is a (ge neral ized)  coo rdina te,

the n

            { , H} = ∑1
n (∂ /∂q i)(∂ H/∂p i) – (∂ /∂p i)(∂ H/∂q i) .

(n is the ”numb er of deg rees of fre edom”  of the  sys tem). 

Ham ilton ’s equ ation s are 

     ∂H/∂p i = dqi/dt  and  ∂H/∂q i = – dpi/dt  ,

and  the refor e

            { , H} = ∑1
n (∂ /∂q i)(d qi/dt ) + (∂ /∂q i)(d pi/dt ) .

The  tot al dif feren tial of (pi, qi) is

         d  = ∑1
n (∂ /∂q i)dq i + (∂ /∂p i)dp i.

and  its  tim e der ivati ve is

            (d /dt ) = ∑1
n (∂ /∂q i)(d qi/dt ) + (∂ /∂p i)(d pi/dt )

                •   
              = { , H} =  .

If the  Poi sson Bra cket is zer o, the  phy sical  qua ntity   is a con stant 

of the  mot ion.

In Qua ntum Mec hanic s, the  rel ation 

   (d /dt ) = { , H}
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is rep laced  by

   (d /dt ) = −(i/ h))[ , H],

Hei senbe rg’s equ ation  of mot ion.  It is the  cus tom to ref er to the 

com mutat or [ , H] as the  Dir ac Bra cket. 

If the  Dir ac Bra cket is zer o, the  qua ntum mec hanic al qua ntity   is

a con stant  of the  mot ion..   

(Di rac pro ved that the  cla ssica l Poi sson Bra cket { , H} can  be

ide ntifi ed wit h the  Hei senbe rg com mutat or –(i /h)[ , H] by mak ing a

sui table  cho ice of the  ord er of the  q’s  and  p’s  in the  Poi sson Bra cket) .

14. 2  Inf inite simal  uni tary tra nsfor matio ns in Qua ntum Mec hanic s

The  Lie  for m of an inf inite simal  uni tary tra nsfor matio n is

   U = I + iδαX/h ,

whe re δα ia rea l inf inite simal  par amete r, and  X is an her mitia n ope rator .

(It  is str aight forwa rd to sho w tha t thi s for m of U is,  ind eed, uni tary) .

Let  a dyn amica l ope rator   chan ge und er an inf inite simal  uni tary

tra nsfor matio n:

    → ´ = U U–1  

       = (I + iδaX/h) (I – iδaX/h)

       =  – iδa X/h + iδaX /h to 1st -orde r

       =  + i(δaX  – δaX)/h
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       =  + i(F  – F)/h.

whe re

    F = δaX.

The  inf inite simal  cha nge in  is the refor e

  δ  = ´ – 

       = i[F, ]/h

If we ide ntify  F wit h –Hδt (th e cla ssica l for m for  a pur ely tem poral  cha nge  

in the  sys tem) the n

δ  = i[−Hδt, ]/h,

or

        –δ  = i[H, ]δt/h ,

so tha t

    –δ /δt = i[H, ]/h.

For  a tem poral  cha nge in the  sys tem, δ /δt = – d /dt .

The  fun damen tal Hei senbe rg equ ation  of mot ion

      d /dt  = i[ , ]/h

is the refor e ded uced fro m the  uni tary inf inite simal  tra nsfor matio n of the 

ope rator  .

Thi s app roach  was  tak en by Sch winge r in his  for mulat ion of Qua ntum

Mec hanic s.
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|F| = Hδt is dir ectly  rel ated to the  gen erato r, X, of a Qua ntum

Mec hanic al inf inite simal  tra nsfor matio n, and  the refor e we can  ass ociat e

wit h eve ry sym metry  tra nsfor matio n of the  sys tem an her mitia n ope rator 

F tha t is a con stant  of the  mot ion - its  eig enval ues do not  cha nge wit h

tim e.  Thi s is an exa mple of Noe ther’ s The orem:

A con serva tion law  is ass ociat ed wit h eve ry sym metry  of the 

equ ation s of mot ion.  If the  equ ation s of mot ion are  unc hange d by the 

tra nsfor matio ns of a Gro up the n a pro perty  of the  sys tem wil l rem ain

con stant  as the  sys tem evo lves wit h tim e.  As a wel l-kno wn exa mple,  if the 

equ ation s of mot ion of an obj ect are  inv arian t und er tra nslat ions in spa ce,

the  lin ear mom entum  of the  sys tem is con serve d.
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